Cho một tấm gỗ hình vuông cạnh \(200cm\). Người ta cắt một tấm gỗ có hình một tam giác vuông \[ABC\] từ tấm gỗ hình vuông đã cho như hình vẽ sau. Biết \[AB = x\left( {cm} \right)\](\[0 < x < 60\]) là một cạnh góc vuông của tam giác \[ABC\] và tổng độ dài cạnh góc vuông \[AB\] với cạnh huyền \[BC\] bằng \[120\]\(cm\). Tìm \[x\] để tam giác \[ABC\] có diện tích lớn nhất.
![Tìm \[x\] để tam giác \[ABC\] có diện tích lớn nhất. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/10-1759202928.png)
Quảng cáo
Trả lời:

Độ dài cạnh huyền \[BC = 120 - x\].
Khi đó độ dài cạnh \[AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{\left( {120 - x} \right)}^2} - {x^2}} = \sqrt {14400 - 240x} \].
Diện tích tam giác \[ABC\] là: \[S = \frac{1}{2}AB.AC = \frac{1}{2}x\sqrt {14400 - 240x} \] \(\left( {c{m^2}} \right)\)
Xét hàm số \[f(x) = x\sqrt {14400 - 240x} \] với \[0 < x < 60\].
Ta có: \[f'(x) = \sqrt {14400 - 240x} - \frac{{120x}}{{\sqrt {14400 - 240x} }} = \frac{{14400 - 360x}}{{\sqrt {14400 - 240x} }}\];
\[f'(x) = 0 \Leftrightarrow x = 40 \in \left( {0;60} \right)\]
Bảng biến thiên
Vậy tam giác \[ABC\] có diện tích lớn nhất khi \[AB = 40\]\(cm\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hàm số đã cho xác định và liên tục trên \(\left( { - \infty ; - 1} \right) \cup \left( { - 1; + \infty } \right)\)
\(y = \frac{{m{x^2} + \left( {{m^2} + m + 2} \right)x + {m^2} + 3}}{{x + 1}} = mx + {m^2} + 2 + \frac{1}{{x + 1}},x \ne - 1\)
Vì \(\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{x + 1}} = 0\) nên \(\left( d \right):y = mx + {m^2} + 2\) \( \Leftrightarrow \left( d \right):mx - y + {m^2} + 2 = 0\) là đường cận xiên hoặc ngang của hàm số.
Ta có: \(d\left( {O;d} \right) = \frac{{\left| {{m^2} + 2} \right|}}{{\sqrt {{m^2} + 1} }} = \sqrt {{m^2} + 1} + \frac{1}{{\sqrt {{m^2} + 1} }} \ge 2\)
Vậy \(d\left( {O;d} \right)\) nhỏ nhất bằng \(2\) khi \(\sqrt {{m^2} + 1} = \frac{1}{{\sqrt {{m^2} + 1} }} \Leftrightarrow m = 0\).
Khi đó hàm số có tiệm cận ngang là \(y = 2\).
Lời giải
Ta có\(y' = 3{x^2} - 6x - m\).
Hàm số đồng biến trên khi \(y' \ge 0,\;\forall x \in \left( {0; + \infty } \right) \Leftrightarrow 3{x^2} - 6x - m \ge 0,\;\forall x \in \left( {0; + \infty } \right)\)
\( \Leftrightarrow 3{x^2} - 6x \ge m,\;\forall x \in \left( {0; + \infty } \right)\;\quad \left( 1 \right)\)
Xét hàm số \(f\left( x \right) = 3{x^2} - 6x\;\)trên \(\left( {0; + \infty } \right)\)
Ta có \(f'\left( x \right) = 6x - 6\,,\;f'\left( x \right) = 0 \Leftrightarrow x = 1.\) Do đó \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = f\left( 1 \right) = - 3\]
\(\left( 1 \right) \Leftrightarrow m \le - 3.\)Kết hợp với giả thiết ta được \(m \in \left( { - 2024; - 3} \right]\). Nên có \[2021\] số nguyên thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.