PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị \(\left( C \right)\)như hình vẽ

a) Đồ thị \(\left( C \right)\)đi qua gốc toạ độ.
b) Hàm số \(y = f\left( x \right)\)nghịch biến trên \(\left( { - 1;3} \right)\).
c) Hàm số \(y = f\left( x \right) = {x^3} - 3x + 1\).
d) Tiếp tuyến của đồ thị \(\left( C \right)\)tại điểm \(A\left( {1; - 1} \right)\) song song với trục hoành.
PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị \(\left( C \right)\)như hình vẽ
a) Đồ thị \(\left( C \right)\)đi qua gốc toạ độ.
b) Hàm số \(y = f\left( x \right)\)nghịch biến trên \(\left( { - 1;3} \right)\).
c) Hàm số \(y = f\left( x \right) = {x^3} - 3x + 1\).
d) Tiếp tuyến của đồ thị \(\left( C \right)\)tại điểm \(A\left( {1; - 1} \right)\) song song với trục hoành.
Quảng cáo
Trả lời:

a) Dựa vào hình vẽ, ta thấy đồ thị \(\left( C \right)\)không đi qua gốc toạ độ.
b) Dựa vào hình vẽ, ta thấy hàm số \(y = f\left( x \right)\)nghịch biến trên \(\left( { - 1;1} \right)\), đồng biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\).
c) Dựa vào hình vẽ ta thấy đồ thị hàm số \(y = f\left( x \right)\)có điểm cực đại là \(A\left( { - 1;3} \right)\)và điểm cực tiểu lả \(B\left( {1; - 1} \right)\).
Khi đó, \(\left\{ \begin{array}{l}f\left( 1 \right) = - 1\\f\left( { - 1} \right) = 3\\f'\left( 1 \right) = 0\\f'\left( { - 1} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b + c + d = - 1\\ - a + b - c + d = 3\\3a + 2b + c = 0\\3a - 2b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\\c = - 3\\d = 1\end{array} \right.\).
Suy ra \(y = f\left( x \right) = {x^3} - 3x + 1\).
d) Dựa vào hình vẽ ta thấy đồ thị,hàm số \(y = f\left( x \right)\) điểm cực tiểu lả \(B\left( {1; - 1} \right)\)nên \(f'\left( 1 \right) = 0\). Do vậy, tiếp tuyến của đồ thị \(\left( C \right)\)tại điểm \(A\left( {1; - 1} \right)\)là \(y = 0\left( {x - 1} \right) - 1 = - 1\) song song với trục hoành.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hàm số đã cho xác định và liên tục trên \(\left( { - \infty ; - 1} \right) \cup \left( { - 1; + \infty } \right)\)
\(y = \frac{{m{x^2} + \left( {{m^2} + m + 2} \right)x + {m^2} + 3}}{{x + 1}} = mx + {m^2} + 2 + \frac{1}{{x + 1}},x \ne - 1\)
Vì \(\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{x + 1}} = 0\) nên \(\left( d \right):y = mx + {m^2} + 2\) \( \Leftrightarrow \left( d \right):mx - y + {m^2} + 2 = 0\) là đường cận xiên hoặc ngang của hàm số.
Ta có: \(d\left( {O;d} \right) = \frac{{\left| {{m^2} + 2} \right|}}{{\sqrt {{m^2} + 1} }} = \sqrt {{m^2} + 1} + \frac{1}{{\sqrt {{m^2} + 1} }} \ge 2\)
Vậy \(d\left( {O;d} \right)\) nhỏ nhất bằng \(2\) khi \(\sqrt {{m^2} + 1} = \frac{1}{{\sqrt {{m^2} + 1} }} \Leftrightarrow m = 0\).
Khi đó hàm số có tiệm cận ngang là \(y = 2\).
Lời giải
Ta có\(y' = 3{x^2} - 6x - m\).
Hàm số đồng biến trên khi \(y' \ge 0,\;\forall x \in \left( {0; + \infty } \right) \Leftrightarrow 3{x^2} - 6x - m \ge 0,\;\forall x \in \left( {0; + \infty } \right)\)
\( \Leftrightarrow 3{x^2} - 6x \ge m,\;\forall x \in \left( {0; + \infty } \right)\;\quad \left( 1 \right)\)
Xét hàm số \(f\left( x \right) = 3{x^2} - 6x\;\)trên \(\left( {0; + \infty } \right)\)
Ta có \(f'\left( x \right) = 6x - 6\,,\;f'\left( x \right) = 0 \Leftrightarrow x = 1.\) Do đó \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = f\left( 1 \right) = - 3\]
\(\left( 1 \right) \Leftrightarrow m \le - 3.\)Kết hợp với giả thiết ta được \(m \in \left( { - 2024; - 3} \right]\). Nên có \[2021\] số nguyên thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.