Câu hỏi:

30/09/2025 68 Lưu

Một bể ban đầu chứa \(150\) lít nước. Sau đó, cứ mỗi phút người ta bơm thêm   \(50\) lít nước, đồng thời cho vào bể \(20\) gam chất khử trùng ( hòa tan ). Đặt \(f\left( t \right)\) gam/lít là nồng độ chất khử trùng trong bể sau \(t\) phút ( \(t \ge 0\)), biết rằng sau khi khảo sát sự biến thiên của hàm số \(f\left( t \right)\), ta thấy giá trị \(f\left( t \right)\) tăng theo \(t\) nhưng không vượt ngưỡng \(p\) gam/lít. Tìm số \(p\) ( kết quả thể hiện dưới dạng số thập phân ).

A. \(p = 0,4\).               
B. \(p = 0,3\).             
C. \(p = 0,2\).                           
D. \(p = 0,1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Sau \(t\) phút, trong bể chứa \(\left( {50t + 150} \right)\)lít nước và \(20t\)gam chất khử trùng.

Suy ra   nồng độ chất khử trùng trong bể sau \(t\) phút là \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\)gam/lít.

Khảo sát sự biến thiên hàm số \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\), \(t \ge 0\) .

Ta có : \(f'\left( t \right) = \frac{{3000}}{{{{\left( {50t + 150} \right)}^2}}} > 0,\forall t \ge 0\)

\(\mathop {\lim }\limits_{t \to  + \infty } f\left( t \right) = \mathop {\lim }\limits_{t \to  + \infty } \frac{{20t}}{{50t + 150}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{20}}{{50 + \frac{{150}}{t}}} = \frac{2}{5} = 0,4\)

Bảng biến thiên

Tìm số \(p\) ( kết quả thể hiện dưới dạng số thập phân ). (ảnh 1)

Dựa vào BBT ta thấy giá trị \(f\left( t \right)\) tăng theo \(t\) nhưng không vượt ngưỡng \(0,4\)gam/lít.

Vậy \(p = 0,4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

với \(m = 0\) ta có \(y = \frac{{x - 3}}{{x - 1}}\). Khi đó đồ thị hàm số không có tiệm cận xiên.

với \(m = 2\) ta có \(y = \frac{{2{x^2} + x - 3}}{{x - 1}} = 2x + 3\). Khi đó đồ thị hàm số không có tiệm cận xiên.

với \(m \ne 0;m \ne 2\) ta có \(y = mx + m + 1 + \frac{{m - 2}}{{x - 1}}\).

Ta có: \[\mathop {\lim }\limits_{x \to  \pm \infty } \left( {y - mx - m - 1} \right) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{m - 2}}{{x - 1}} = 0\] nên đường tiệm cận xiên của đồ thị hàm số là \(y = mx + m + 1\) .

Giao điểm của tiệm cận xiên với trục \(Ox\) là \(\left( {\frac{{ - m - 1}}{m};0} \right)\);

Giao điểm của tiệm cận xiên với trục \(Oy\) là \(\left( {0;m + 1} \right)\).

Đường tiệm cận xiên tạo thành một tam giác thì diện tích của tam giác:

 \(S = \frac{1}{2}.\left| {m + 1} \right|.\left| {\frac{{ - m - 1}}{m}} \right| = 2 \Leftrightarrow {\left( {m + 1} \right)^2} = 4\left| m \right| \Leftrightarrow \left[ \begin{array}{l}{m^2} + 2m + 1 = 4m;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 2m + 1 =  - 4m;\,\,\,khi\,\,m < 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 6m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{1}{2}\\m =  - 3 + 2\sqrt 2 \\m =  - 3 - 2\sqrt 2 \end{array} \right.\).

Vậy tổng giá trị của \(S\) bằng \(\frac{{ - 11}}{2}\).

Lời giải

Đáp án: \[3\].

Hàm số \(y = f(x) = {2024^x} - {2024^{ - x}} + x + \sin x\) xác định trên \(\mathbb{R}\) và

\(f( - x) = {2024^{ - x}} - {2024^x} - x - \sin x =  - f(x)\)

, suy ra \(f(x)\) là hàm số lẻ.

Mặt khác, \(y' = f'(x) = {2024^x}.\ln 2024 + {2024^{ - x}}.\ln 2024 + 1 + \cos x > 0,\,\,\forall x \in \mathbb{R}\).

Do đó, \(f(x)\) đồng biến trên \(\mathbb{R}\).

Khi đó, phương trình

\[f(x + 3) + f\left( {{x^3} - 4x + m} \right) = 0 \Leftrightarrow f(x + 3) =  - f\left( {{x^3} - 4x + m} \right)\]

\[ \Leftrightarrow f(x + 3) = f\left( { - {x^3} + 4x - m} \right) \Leftrightarrow x + 3 =  - {x^3} + 4x - m\]

\[ \Leftrightarrow {x^3} - 3x + 3 =  - m\]

Đặt \[g(x) = {x^3} - 3x + 3 \Rightarrow g'(x) = 3{x^2} - 3\].

Ta có \[g'(x) = 0 \Leftrightarrow 3{x^2} - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\].

Bảng biến thiên:

Cho hàm số \(y = f(x) = {2024^x} - {2024^{ - x}} + x + \sin x\). Có bao nhiêu giá trị nguyên của tham số m để phương trình \(f(x + 3) + f\left( {{x^3} - 4x + m} \right) = 0\) có đúng ba nghiệm phân biệt? (ảnh 1)

Từ bảng biến thiên suy ra phương trình đã cho có 3 nghiệm phân biệt khi và chỉ khi đường thẳng \(y =  - m\) cắt đồ thị hàm số \[g(x) = {x^3} - 3x + 3\] tại 3 điểm phân biệt

\( \Leftrightarrow 1 <  - m < 5 \Leftrightarrow  - 5 < m <  - 1\).

Vậy có 3 giá trị nguyên của m thoả đề.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(7\).                       
B. \(5\).                     
C. \(8\).                           
D. \(11\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP