Cho đồ thị hàm số \[y = \frac{{bx - c}}{{x - a}}\] (\[a,b,c \in \mathbb{R}\]) có đồ thị như hình vẽ bên dưới.

a) Hàm số nghịch biến trên từng khoảng xác định.
b) Giao điểm với trục tung là điểm có tung độ âm.
c) Giao điểm với trục hoành là điểm có hoành độ âm.
d) Trong các số \[a,b,c\] có hai số âm.
Cho đồ thị hàm số \[y = \frac{{bx - c}}{{x - a}}\] (\[a,b,c \in \mathbb{R}\]) có đồ thị như hình vẽ bên dưới.

a) Hàm số nghịch biến trên từng khoảng xác định.
b) Giao điểm với trục tung là điểm có tung độ âm.
c) Giao điểm với trục hoành là điểm có hoành độ âm.
d) Trong các số \[a,b,c\] có hai số âm.
Quảng cáo
Trả lời:
a) Đúng .
Hàm số nghịch biến trên từng khoảng xác định.
b) Đúng.
Giao điểm với trục tung là điểm có tung độ âm.
c) Đúng.
Giao điểm với trục hoành là điểm có hoành độ âm.
d) Sai.
Tiệm cận đứng \(x = a > 0\).
Tiệm cận ngang \(y = b > 0\).
Đồ thị hàm số cắt trục tung tại điểm có tung độ \(\frac{c}{a} < 0 \Rightarrow c < 0\) (vì \(a > 0\) ).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
với \(m = 0\) ta có \(y = \frac{{x - 3}}{{x - 1}}\). Khi đó đồ thị hàm số không có tiệm cận xiên.
với \(m = 2\) ta có \(y = \frac{{2{x^2} + x - 3}}{{x - 1}} = 2x + 3\). Khi đó đồ thị hàm số không có tiệm cận xiên.
với \(m \ne 0;m \ne 2\) ta có \(y = mx + m + 1 + \frac{{m - 2}}{{x - 1}}\).
Ta có: \[\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - mx - m - 1} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{m - 2}}{{x - 1}} = 0\] nên đường tiệm cận xiên của đồ thị hàm số là \(y = mx + m + 1\) .
Giao điểm của tiệm cận xiên với trục \(Ox\) là \(\left( {\frac{{ - m - 1}}{m};0} \right)\);
Giao điểm của tiệm cận xiên với trục \(Oy\) là \(\left( {0;m + 1} \right)\).
Đường tiệm cận xiên tạo thành một tam giác thì diện tích của tam giác:
\(S = \frac{1}{2}.\left| {m + 1} \right|.\left| {\frac{{ - m - 1}}{m}} \right| = 2 \Leftrightarrow {\left( {m + 1} \right)^2} = 4\left| m \right| \Leftrightarrow \left[ \begin{array}{l}{m^2} + 2m + 1 = 4m;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 2m + 1 = - 4m;\,\,\,khi\,\,m < 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 6m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{1}{2}\\m = - 3 + 2\sqrt 2 \\m = - 3 - 2\sqrt 2 \end{array} \right.\).
Vậy tổng giá trị của \(S\) bằng \(\frac{{ - 11}}{2}\).
Lời giải
Đáp án: \[3\].
Hàm số \(y = f(x) = {2024^x} - {2024^{ - x}} + x + \sin x\) xác định trên \(\mathbb{R}\) và
\(f( - x) = {2024^{ - x}} - {2024^x} - x - \sin x = - f(x)\)
, suy ra \(f(x)\) là hàm số lẻ.
Mặt khác, \(y' = f'(x) = {2024^x}.\ln 2024 + {2024^{ - x}}.\ln 2024 + 1 + \cos x > 0,\,\,\forall x \in \mathbb{R}\).
Do đó, \(f(x)\) đồng biến trên \(\mathbb{R}\).
Khi đó, phương trình
\[f(x + 3) + f\left( {{x^3} - 4x + m} \right) = 0 \Leftrightarrow f(x + 3) = - f\left( {{x^3} - 4x + m} \right)\]
\[ \Leftrightarrow f(x + 3) = f\left( { - {x^3} + 4x - m} \right) \Leftrightarrow x + 3 = - {x^3} + 4x - m\]
\[ \Leftrightarrow {x^3} - 3x + 3 = - m\]
Đặt \[g(x) = {x^3} - 3x + 3 \Rightarrow g'(x) = 3{x^2} - 3\].
Ta có \[g'(x) = 0 \Leftrightarrow 3{x^2} - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\].
Bảng biến thiên:

Từ bảng biến thiên suy ra phương trình đã cho có 3 nghiệm phân biệt khi và chỉ khi đường thẳng \(y = - m\) cắt đồ thị hàm số \[g(x) = {x^3} - 3x + 3\] tại 3 điểm phân biệt
\( \Leftrightarrow 1 < - m < 5 \Leftrightarrow - 5 < m < - 1\).
Vậy có 3 giá trị nguyên của m thoả đề.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
