Cho hàm số \(y = - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\), với \(m\) là tham số. Hỏi có bao nhiêu giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)?
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:
Ta có:
+) TXĐ: \(D = \mathbb{R}\)
+) \(y' = - 3{x^2} - 2mx + 4m + 9\).
Hàm số nghịch biến trên \(\left( { - \infty ; + \infty } \right)\) khi \(y' \le 0,\,\forall x \in \left( { - \infty ; + \infty } \right)\) \( \Leftrightarrow \left\{ \begin{array}{l}a = - 3 < 0\\\Delta ' = {m^2} + 3\left( {4m + 9} \right) \le 0\end{array} \right.\)
\( \Leftrightarrow m \in \left[ { - 9; - 3} \right]\) \( \Rightarrow \) có 7 giá trị nguyên của \(m\) thỏa mãn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tập xác định \(D = \mathbb{R}\).
\(y' = f'(x) = 4{x^3} - 4x\).
Cho \(y' = 0 \Leftrightarrow x = - 1 \vee x = 0 \vee x = 1.\)
Ta có bảng biến thiên:

Từ bảng biến thiên ta thấy
a) Đúng.
b) Sai.
c) Sai.
d) Đúng.Ta có
\[\begin{array}{l}f(2x) = 16{x^4} - 8{x^2} - 5\\ \Rightarrow f'(2x) = 64{x^3} - 16x\end{array}\]
Cho \(f'(2x) = 0 \Leftrightarrow x = \frac{{ - 1}}{2} \vee x = 0 \vee x = \frac{1}{2}\)
Ta có bảng biến thiên sau:

Ta thấy hàm \(y = f(x)\) và \[y = f(2x)\] đều đạt cực đại tại \(x = 0\).
Lời giải
a) Đúng.
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 3}}{{x + 1}} = 2\) nên đồ thị hàm số có đường tiệm cận ngang là đường thẳng \(y = 2\).
b) Sai.
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - 3}}{{x + 1}} = \frac{{2.1 - 3}}{{1 + 1}}\)\( = - \frac{1}{2}\) và \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 3}}{{x + 1}} = \frac{{2.1 - 3}}{{1 + 1}}\)\( = - \frac{1}{2}\).
Do đó, đường thẳng \(x = 1\) không phải là đường tiệm cận đứng của đồ thị hàm số đã cho.
c) Đúng.
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 3}}{{x + 1}} = 2\) và \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 3}}{{x + 1}} = 2\) nên đồ thị hàm số chỉ có một đường tiệm cận ngang là đường thẳng \(y = 2\).
Lại có: \(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x - 3}}{{x + 1}} = - \infty \) và \(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x - 3}}{{x + 1}} = + \infty \), hơn nữa chỉ khi \(x\) dần đến \( - 1\) thì \(y\) mới dần đến vô cực nên đồ thị hàm số chỉ có một đường tiệm cận đứng là \(x = - 1\).
Do đó, đồ thị hàm số chỉ có đúng hai đường tiệm cận.
d) Đúng.
Ta có tọa độ giao điểm của hai đường tiệm cận của đồ thị hàm số là \(I\left( { - 1;2} \right)\).
Thế \(x = - 1\) và \(y = 2\) vào phương trình đường thẳng \(\left( \Delta \right):x + 2y - 3 = 0\), ta được:
\( - 1 + 2.2 - 3 = 0\) (Đúng)
Vậy điểm \(I\left( { - 1;2} \right)\) nằm trên đường thẳng \(\left( \Delta \right):x + 2y - 3 = 0\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
