Câu hỏi:

30/09/2025 270 Lưu

Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) \(\left( {a,b,c,d \in \mathbb{R}} \right)\) có đồ thị như hình bên.

Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) \(\left( {a,b,c,d \in \mathbb{R}} \right)\) có đồ thị như hình bên. (ảnh 1)

Đặt \(g\left( x \right) = f\left( {{x^2} + x + 2} \right)\). Số nghiệm của phương trình \[g\left( x \right) =  - 2\] là?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp số: 0.

Hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\), có đồ thị như hình vẽ.

Nhận xét \(A\left( {0;4} \right)\) và \(M\left( {2;0} \right)\) là hai điểm cực trị của đồ thị hàm số.

Ta có hệ \(\left\{ \begin{array}{l}f\left( 0 \right) = 4\\f\left( 2 \right) = 0\\f'\left( 0 \right) = 0\\f'\left( 2 \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = 4\\8a + 4b + 2c + d = 0\\3a - 2b + c = 0\\12a + 4b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 3\\c = 0\\d = 4\end{array} \right.\).

Tìm được hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 4\).

Ta có \(g\left( x \right) = {\left( {{x^2} + x + 2} \right)^3} - 3{\left( {{x^2} + x + 2} \right)^2} + 4\).

Khi đó \(g'\left( x \right) = \left( {2x + 1} \right)\left[ {3{{\left( {{x^2} + x + 2} \right)}^2} - 6\left( {{x^2} + x + 2} \right)} \right]\).

\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{1}{2}\\x = 0\\x =  - 1\end{array} \right.\).

Ta có bảng biến thiên:

Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) \(\left( {a,b,c,d \in \mathbb{R}} \right)\) có đồ thị như hình bên. (ảnh 2)

Dựa vào bảng biến thiên, số nghiệm của phương trình \[g\left( x \right) =  - 2\] là 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định \(D = \mathbb{R}\).

\(y' = f'(x) = 4{x^3} - 4x\).

Cho \(y' = 0 \Leftrightarrow x =  - 1 \vee x = 0 \vee x = 1.\)

Ta có bảng biến thiên:

ho hàm số \(y = f(x) = {x^4} - 2{x^2} - 5\). Các khẳng định sau là đúng hay sai ?  a) Hàm số có 3 điểm cực trị. (ảnh 1)

Từ bảng biến thiên ta thấy

a)    Đúng.

b)    Sai.

c)    Sai.

d)    Đúng.Ta có

\[\begin{array}{l}f(2x) = 16{x^4} - 8{x^2} - 5\\ \Rightarrow f'(2x) = 64{x^3} - 16x\end{array}\]

Cho \(f'(2x) = 0 \Leftrightarrow x = \frac{{ - 1}}{2} \vee x = 0 \vee x = \frac{1}{2}\)

Ta có bảng biến thiên sau:

ho hàm số \(y = f(x) = {x^4} - 2{x^2} - 5\). Các khẳng định sau là đúng hay sai ?  a) Hàm số có 3 điểm cực trị. (ảnh 2)
Ta thấy hàm \(y = f(x)\) và \[y = f(2x)\] đều đạt cực đại tại \(x = 0\).

Câu 2

A. \[M = 3;m = - 1\]. 
B. \[M = 4;m = - 2\].                             
C. \[M = 3;m = - 3\].                             
D. \[M = - 1;m = 1\].

Lời giải

Từ đồ thị của hàm số \[f\left( x \right)\], ta thấy \[M = \mathop {{\rm{max}}}\limits_{\left[ { - 3;3} \right]} f\left( x \right) = f\left( 3 \right) = 4;m = \mathop {{\rm{min}}}\limits_{\left[ { - 3;3} \right]} f\left( x \right) = f\left( { - 3} \right) =  - 2\].

Câu 4

A. \[y = 2x + 1\].       
B. \(y = x + 1\).       
C. \[y = - x + 1\].                          
D. \[y = x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = \frac{{x + 2}}{{x + 1}}\).           
B. \(y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\).
C. \(y = {x^2} - 2x + 2\).                           
D. \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y = 3\).               
B. \[y = 0\].              
C. \[y = 1\].                             
D. \[y = 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP