Xét tính đúng sai của các mệnh đề sau:
a) Cho hàm số bậc ba \(y = f\left( x \right)\) có bảng biến thiên như sau:

Khi đó giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\)trên \[\left( { - 2;\; + \infty } \right)\] bằng -3.
b) Giá trị lớn nhất của hàm số \(y = {x^3} - 2{x^2} - 7x + 1\) trên đoạn \(\left[ { - 2;1} \right]\) bằng -1.
c) Giá trị lớn nhất của hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\) trên \[\left[ {2;3} \right]\] bằng 3.
d) Một hãng dược phẩm cần một số lọ đựng thuốc dạng hình trụ với dung tích \(16\pi c{m^3}\). Để ít tốn nguyên liệu sản xuất nhất thì bán kính đáy\(R\)của lọ bằng \(2cm\).
Xét tính đúng sai của các mệnh đề sau:
a) Cho hàm số bậc ba \(y = f\left( x \right)\) có bảng biến thiên như sau:

Khi đó giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\)trên \[\left( { - 2;\; + \infty } \right)\] bằng -3.
b) Giá trị lớn nhất của hàm số \(y = {x^3} - 2{x^2} - 7x + 1\) trên đoạn \(\left[ { - 2;1} \right]\) bằng -1.
c) Giá trị lớn nhất của hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\) trên \[\left[ {2;3} \right]\] bằng 3.
d) Một hãng dược phẩm cần một số lọ đựng thuốc dạng hình trụ với dung tích \(16\pi c{m^3}\). Để ít tốn nguyên liệu sản xuất nhất thì bán kính đáy\(R\)của lọ bằng \(2cm\).
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:
a) Đúng.
Dựa vào BBT suy ra giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \[\left( { - 2;\; + \infty } \right)\] bằng -3.
b) Sai.
Ta có \(y' = 3{x^2} - 4x - 7\), \(y' = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = - 1 \in \left( { - 2;1} \right)\\x = \frac{7}{3} \notin \left( { - 2;1} \right)\end{array} \right.\)
\(y\left( { - 2} \right) = - 1,\)\(y\left( 1 \right) = - 7,\)\(y\left( { - 1} \right) = 5\). Vậy \(\mathop {\max }\limits_{\left[ { - 2;1} \right]} y = y\left( { - 1} \right) = 5\).
c) Sai.
Có \(y' = \frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}} \ge 0,\,\forall x \in \left[ {2;3} \right]\) nên hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\) đồng biến trên \[\left[ {2;3} \right]\].
Suy ra giá trị lớn nhất của hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\) trên \[\left[ {2;3} \right]\]bằng \[y\left( 3 \right) = \frac{7}{2}\].
d) Đúng.
Ta có \(V = \pi {R^2}h = 16\pi \Rightarrow h = \frac{{16}}{{{R^2}}}\).
Để ít tốn nguyên liệu nhất thì diện tích toàn phần của lọ phải nhỏ nhất.
Ta có \({S_{{\rm{tp}}}} = 2\pi {R^2} + 2\pi Rh = 2\pi {R^2} + \frac{{32\pi }}{R} = 2\pi {R^2} + \frac{{16\pi }}{R} + \frac{{16\pi }}{R} \ge 3\sqrt[3]{{2\pi {R^2}.\frac{{16\pi }}{R}.\frac{{16\pi }}{R}}} = 24\pi \).
Dấu “\( = \)” xảy ra \[ \Leftrightarrow 2\pi {R^2} = \frac{{16\pi }}{R} \Leftrightarrow R = 2(cm)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Đáp số: \( - 3\).
Ta có: \(y' = \frac{{1 + m}}{{{{\left( {x + 1} \right)}^2}}}\).
TH1: \(1 + m > 0 \Leftrightarrow m > - 1\)
Khi đó: \(y' > 0\),\(\forall x \in \left[ {1;3} \right]\)\( \Rightarrow \) hàm số \(y = \frac{{x - m}}{{x + 1}}\) đồng biến trên đoạn \(\left[ {1;3} \right]\).
Suy ra: \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = y\left( 3 \right) = \frac{{3 - m}}{4} = 2 \Leftrightarrow m = - 5\) (loại).
TH2: \(1 + m < 0 \Leftrightarrow m < - 1\)
Khi đó: \(y' < 0\),\(\forall x \in \left[ {1;3} \right]\)\( \Rightarrow \) hàm số \(y = \frac{{x - m}}{{x + 1}}\) nghịch biến trên đoạn \(\left[ {1;3} \right]\).
Suy ra: \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = y\left( 1 \right) = \frac{{1 - m}}{2} = 2 \Leftrightarrow m = - 3\) (thoả mãn).
Vậy \(m = - 3\) là giá trị cần tìm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
