Câu hỏi:

30/09/2025 691 Lưu

PHẦN III. CÂU TRẮC NGHIỆM TRẢ LỜI NGẮN

Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - \left( {m - 1} \right){x^2} + 3x + 2024\) đồng biến trên tập xác định?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp số: \(10\).

Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' = 3\left( {m - 1} \right){x^2} - 2\left( {m - 1} \right)x + 3\).

Hàm số đồng biến trên \(\mathbb{R}\) khi \(y' \ge 0,{\rm{ }}\forall x \in \mathbb{R}\)\( \Leftrightarrow 3\left( {m - 1} \right){x^2} - 2\left( {m - 1} \right)x + 3 \ge 0,\)\(\forall x \in \mathbb{R}\)

TH1: \(m - 1 = 0 \Leftrightarrow m = 1\). Khi đó \[y' \ge 0\]\( \Leftrightarrow 3 \ge 0\) luôn đúng \(\forall x \in \mathbb{R}\).

Suy ra \(m = 1\) thoả mãn yêu cầu bài toán.

TH2: \(m - 1 \ne 0 \Leftrightarrow m \ne 1\).

Khi đó \(3\left( {m - 1} \right){x^2} - 2\left( {m - 1} \right)x + 3 \ge 0\),\(\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {\left( {m - 1} \right)^2} - 9\left( {m - 1} \right) \le 0\\a = m - 1 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 \le m \le 10\\m > 1\end{array} \right. \Leftrightarrow 1 < m \le 10\)(thoả mãn)

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {2;3;4;5;6;7;8;9;10} \right\}\).

Vậy có tất cả \(10\) giá trị nguyên của tham số \(m\) thoả mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số đồng biến trên khoảng \[\left( {2; + \infty } \right)\].                     
B. Hàm số đồng biến trên khoảng \[\left( { - 2;2} \right)\].
C. Hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\].     
D. Hàm số đồng biến trên khoảng \[\left( { - \infty ; - 2} \right)\].

Lời giải

Do hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) =  - {x^2} - 4 < 0\],\[\forall x \in \mathbb{R}\] nên hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\].

Lời giải

Đáp số: \( - 3\).

Ta có: \(y' = \frac{{1 + m}}{{{{\left( {x + 1} \right)}^2}}}\).

TH1: \(1 + m > 0 \Leftrightarrow m >  - 1\)

Khi đó: \(y' > 0\),\(\forall x \in \left[ {1;3} \right]\)\( \Rightarrow \) hàm số \(y = \frac{{x - m}}{{x + 1}}\) đồng biến trên đoạn \(\left[ {1;3} \right]\).

Suy ra: \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = y\left( 3 \right) = \frac{{3 - m}}{4} = 2 \Leftrightarrow m =  - 5\) (loại).

TH2: \(1 + m < 0 \Leftrightarrow m <  - 1\)

Khi đó: \(y' < 0\),\(\forall x \in \left[ {1;3} \right]\)\( \Rightarrow \) hàm số \(y = \frac{{x - m}}{{x + 1}}\) nghịch biến trên đoạn \(\left[ {1;3} \right]\).

Suy ra: \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = y\left( 1 \right) = \frac{{1 - m}}{2} = 2 \Leftrightarrow m =  - 3\) (thoả mãn).

Vậy \(m =  - 3\) là giá trị cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = - x - 1\).       
B. \(y = x - 1\).        
C. \(y = - x + 1\).                          
D. \(y = x + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP