Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số có bảng biến thiên như sau:
Quảng cáo
Trả lời:

Chọn D
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên các khoảng \(\left( { - 2; - 1} \right)\) và \(\left( { - 1;0} \right)\).
Vậy chọn đáp án D.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.
\(h\left( t \right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow h'\left( t \right) = - 0,03{t^2} + 2,2t - 30 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 55 \notin \left( {0;50} \right)\\t = 18 \in \left( {0;50} \right)\end{array} \right.\)
b) Sai. Dựa vào bảng biến thiên trên ta thấy trong \(50\) giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao thấp nhất mà con tàu đạt được tại thời điểm \(t \approx 18\left( {\rm{s}} \right)\).
c) Đúng. \(h\left( t \right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow v\left( t \right) = h'\left( t \right) = - 0,03{t^2} + 2,2t - 30\)
\( \Rightarrow a\left( t \right) = v'\left( t \right) = - 0,06t + 2,2 = 0 \Leftrightarrow t \approx 37\).
Vận tốc của con tàu lớn nhất mà con tàu đạt được là \(10,33\,\,\left( {{\rm{km/s}}} \right)\).
d) Sai. \(h\left( t \right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow v\left( t \right) = h'\left( t \right) = - 0,03{t^2} + 2,2t - 30\)
\( \Rightarrow a\left( t \right) = v'\left( t \right) = - 0,06t + 2,2 = 0 \Leftrightarrow t \approx 37\).
Khi đó: \({v_{{\rm{max}}}} = 10,33 \Leftrightarrow t \approx 37;\,\,\,\,h\left( {37} \right) = 139,37\)km.
Lời giải
Gọi chiều rộng của bể là \(3x{\rm{ }}\left( {\rm{m}} \right)\). Ta có chiều dài bể là \(4x{\rm{ (m)}}\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\left( {\rm{m}} \right).\)
Khi đó tổng diện tích bề mặt xây là:
\(T = \left( {3x + 4x} \right).2.\frac{2}{{3{x^2}}} + 2.3x.4x - \frac{2}{9}.3x.4x = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2.\sqrt {\frac{{28}}{{3{x^2}}}.\frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Chi phí \(C\) (tính theo đồng) xây dựng là: \(C = T.980000 \ge \frac{{32\sqrt 7 }}{3}.980000 \approx 27657000\) (đồng).
Vậy chi phí thấp nhất mà ông Nam phải chi trả là \(28\) triệu đồng.
Đáp án: 28.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.