Câu hỏi:

02/10/2025 39 Lưu

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số có bảng biến thiên như sau:

Cho hàm số có bảng biến thiên như sau: Hàm số đã cho nghịch biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A. \(\left( {0; + \infty } \right)\).                         
B. \(\left( { - \infty ; - 1} \right)\).      
C. \(\left( { - \infty ; - 2} \right)\).                          
D. \(\left( { - 2; - 1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Dựa vào bảng biến thiên ta có hàm số nghịch biến trên các khoảng \(\left( { - 2; - 1} \right)\) và \(\left( { - 1;0} \right)\).

Vậy chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right) \ge 0\) với \(\forall x \ge 1\) nên hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\).

b) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right)\) chỉ đổi dấu một lần qua \(x = 1\) nên hàm số có một điểm cực trị.

c) Sai. Từ đồ thị ta có hàm số \(f'\left( x \right)\) có dạng: \(f'\left( x \right) = a{\left( {x + 2} \right)^2}\left( {x - 1} \right)\).

Đồ thị hàm số \(y = f'\left( x \right)\) đi qua \(\left( {0; - 4} \right)\) nên: \( - 4 = a{\left( {0 + 2} \right)^2}\left( {0 - 1} \right) \Leftrightarrow a = 1\).

Vậy \(f'\left( x \right) = {\left( {x + 2} \right)^2}\left( {x - 1} \right) \Rightarrow f'\left( 2 \right) = {\left( {2 + 2} \right)^2}\left( {2 - 1} \right) = 16\).

d) Đúng. Ta có: \(g'\left( x \right) = f'\left( x \right) - x + 1 = 0 \Leftrightarrow f'\left( x \right) = x - 1\).

Vẽ đường thẳng \(y = x - 1\) trên cùng hệ trục tọa độ với đồ thị hàm số \(y = f'\left( x \right)\).

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\)và hàm số \(y = f'\left( x \right)\) là hàm số bậc ba có đ (ảnh 2)

Khi đó: \(f'\left( x \right) = x - 1 \Leftrightarrow \left[ \begin{array}{l}x =  - 3\\x =  - 1\\x = 1\end{array} \right.\).

 Bảng biến thiên của hàm số \(g\left( x \right)\).

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\)và hàm số \(y = f'\left( x \right)\) là hàm số bậc ba có đ (ảnh 3)

Hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) nên \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - \frac{5}{2}; - \frac{3}{2}} \right)\).

Lời giải

a) Đúng.

\(h\left( t \right) =  - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow h'\left( t \right) =  - 0,03{t^2} + 2,2t - 30 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 55 \notin \left( {0;50} \right)\\t = 18 \in \left( {0;50} \right)\end{array} \right.\)

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng (ảnh 1)

b) Sai. Dựa vào bảng biến thiên trên ta thấy trong \(50\) giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao thấp nhất mà con tàu đạt được tại thời điểm \(t \approx 18\left( {\rm{s}} \right)\).

c) Đúng. \(h\left( t \right) =  - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow v\left( t \right) = h'\left( t \right) =  - 0,03{t^2} + 2,2t - 30\)

\( \Rightarrow a\left( t \right) = v'\left( t \right) =  - 0,06t + 2,2 = 0 \Leftrightarrow t \approx 37\).

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng (ảnh 2)

Vận tốc của con tàu lớn nhất mà con tàu đạt được là \(10,33\,\,\left( {{\rm{km/s}}} \right)\).

d) Sai. \(h\left( t \right) =  - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow v\left( t \right) = h'\left( t \right) =  - 0,03{t^2} + 2,2t - 30\)

\( \Rightarrow a\left( t \right) = v'\left( t \right) =  - 0,06t + 2,2 = 0 \Leftrightarrow t \approx 37\).

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng (ảnh 3)

Khi đó: \({v_{{\rm{max}}}} = 10,33 \Leftrightarrow t \approx 37;\,\,\,\,h\left( {37} \right) = 139,37\)km.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hàm số không đạt cực tiểu tại điểm \(x = 2\).
B. Hàm số đạt cực đại tại điểm \(x = - 1\).
C. Điểm cực đại của đồ thị hàm số là \(\left( { - 1;2} \right)\).
D. Giá trị cực đại của hàm số là \(y = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[x = 1\].                     
B. \[y = 1\].                   
C. \[y = 0\].                                   
D. \[x = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP