Câu hỏi:

12/10/2025 81 Lưu

Cho \(\Delta ABC\) với \(BC = a,AC = b,AB = c\). Nếu điểm I thỏa mãn hệ thức \(a\overrightarrow {IA} + b\overrightarrow {IB} + c\overrightarrow {IC} = \overrightarrow 0 \) thì:

A. Điểm I là tâm đường tròn ngoại tiếp \(\Delta ABC\).
B. Điểm I là tâm đường tròn nội tiếp \(\Delta ABC\).
C. Điểm I là trực tâm của \(\Delta ABC\).
D. Điểm I là trọng tâm của \(\Delta ABC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Lấy \(A'\) sao cho \(\frac{{A'B}}{{A'C}} = \frac{c}{b}\) hay \(AA'\) là đường phân giác.

Ta có: \(a\overrightarrow {IA}  + b\overrightarrow {IB}  + c\overrightarrow {IC}  = \overrightarrow 0  \Leftrightarrow a\overrightarrow {IA}  + \left( {b + c} \right)\overrightarrow {IA'}  = \overrightarrow 0 \)

\( \Leftrightarrow \) I thuộc đoạn \(AA'\) và \(\frac{{IA}}{{IA'}} = \frac{{b + c}}{a} = \frac{c}{{\frac{{ac}}{{b + c}}}} = \frac{{BA}}{{BA'}}\)

\( \Rightarrow \) I là tâm đường tròn nội tiếp \(\Delta ABC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành \(ABCD\). Gọi \(E\) và \(F\) là 2 điểm thỏa \(\overrightarrow {BE}  = \frac{1}{3}\overrightarrow {BC} \), \(\overrightarrow {BF (ảnh 1)

Ta phân tích \(\overrightarrow {AE} \) và \(\overrightarrow {AF} \) theo 2 vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \).

\(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AB}  + \frac{1}{3}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AD} \)

\(\overrightarrow {AF}  = \overrightarrow {AB}  + \overrightarrow {BF}  = \overrightarrow {AB}  + \frac{1}{4}(\overrightarrow {AD}  - \overrightarrow {AB} ) = \frac{3}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} \).

Xét hệ: \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AE}  = \overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AD} }\\{\overrightarrow {AF}  = \frac{3}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} }\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AE}  = \overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AD} }\\{\frac{4}{3}\overrightarrow {AF}  = \overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AD} }\end{array} \Rightarrow \overrightarrow {AE}  = \frac{4}{3}\overrightarrow {AF} } \right.} \right.\)

Câu 2

A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OE} + \overrightarrow {OF} \)                                     
B. \(2\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right) = 3\left( {\overrightarrow {OD} + \overrightarrow {OE} + \overrightarrow {OF} } \right)\)
C. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 2\left( {\overrightarrow {OD} + \overrightarrow {OE} + \overrightarrow {OF} } \right)\)           
D. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\left( {\overrightarrow {OD} + \overrightarrow {OE} + \overrightarrow {OF} } \right)\)

Lời giải

Chọn A 

Ta có: \(2\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 2\overrightarrow {OA}  + 2\overrightarrow {OM}  = 4\overrightarrow {OD} \) (1)

Tương tự \(\overrightarrow {OA}  + 2\overrightarrow {OB}  + \overrightarrow {OC}  = 4\overrightarrow {OE} \) (2)

\(\overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = 4\overrightarrow {OF} \) (3)

Cộng vế vói vế (1), (2), (3) ta được đáp án A

Câu 5

A. \[\overrightarrow {MA} = \frac{1}{3}\overrightarrow {MB} \].         
B. \[\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \].          
C. \[\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \].                        
D. \[\overrightarrow {MB} = - 3\overrightarrow {MA} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP