Cho hình thang cân \(ABCD\) có \(AB//CD,AB = 2AD = 2CD,E\) là trung điểm cạnh \(AB\). Khi đó:
a) \(\overrightarrow {AB} = 2\overrightarrow {DC} \);
b) \(\overrightarrow {DE} = - \overrightarrow {CB} \);
c) \(\overrightarrow {CA} + \overrightarrow {CB} = 2\overrightarrow {CE} \);
d) \(\overrightarrow {AD} = \overrightarrow {EC} \);
e) \(\overrightarrow {AB} + \overrightarrow {EB} = 3\overrightarrow {DC} \);
f) \(\overrightarrow {DE} = \frac{1}{2}(\overrightarrow {DA} + \overrightarrow {DB} )\).
Cho hình thang cân \(ABCD\) có \(AB//CD,AB = 2AD = 2CD,E\) là trung điểm cạnh \(AB\). Khi đó:
a) \(\overrightarrow {AB} = 2\overrightarrow {DC} \);
b) \(\overrightarrow {DE} = - \overrightarrow {CB} \);
c) \(\overrightarrow {CA} + \overrightarrow {CB} = 2\overrightarrow {CE} \);
d) \(\overrightarrow {AD} = \overrightarrow {EC} \);
e) \(\overrightarrow {AB} + \overrightarrow {EB} = 3\overrightarrow {DC} \);
f) \(\overrightarrow {DE} = \frac{1}{2}(\overrightarrow {DA} + \overrightarrow {DB} )\).
Quảng cáo
Trả lời:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
|
e) Đúng |
f) Đúng |
|
|

Ta có: \(AE = CD = \frac{1}{2}AB,AE//CD\) nên \(AECD\) là hình bình hành (*).
Hoàn toàn tương tự, ta chứng minh được \(BCDE\) là hình bình hành (**).
a) Mệnh đề đúng.
b) Mệnh đề sai (do \((**))\).
c) Mệnh đề đúng (tính chất trung điểm).
d) Mệnh đề đúng (do (*)).
e) Mệnh đề đúng. Vì \(\overrightarrow {AB} + \overrightarrow {EB} = 2\overrightarrow {EB} + \overrightarrow {EB} = 3\overrightarrow {EB} = 3\overrightarrow {DC} \).
f) Mệnh đề đúng (tính chất trung điểm).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta phân tích \(\overrightarrow {AE} \) và \(\overrightarrow {AF} \) theo 2 vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \).
\(\overrightarrow {AE} = \overrightarrow {AB} + \overrightarrow {BE} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {BC} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} \)
\(\overrightarrow {AF} = \overrightarrow {AB} + \overrightarrow {BF} = \overrightarrow {AB} + \frac{1}{4}(\overrightarrow {AD} - \overrightarrow {AB} ) = \frac{3}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} \).
Xét hệ: \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AE} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} }\\{\overrightarrow {AF} = \frac{3}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} }\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AE} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} }\\{\frac{4}{3}\overrightarrow {AF} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} }\end{array} \Rightarrow \overrightarrow {AE} = \frac{4}{3}\overrightarrow {AF} } \right.} \right.\)
Câu 2
Lời giải
Chọn A
Ta có: \(2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OA} + 2\overrightarrow {OM} = 4\overrightarrow {OD} \) (1)
Tương tự \(\overrightarrow {OA} + 2\overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {OE} \) (2)
\(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OF} \) (3)
Cộng vế vói vế (1), (2), (3) ta được đáp án A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.