Điều kiện xác định của biểu thức \(K = \sqrt { - {x^2} + 5x - 6} - \frac{1}{{2x + 5}}\) là
Quảng cáo
Trả lời:
Chọn A
Điều kiện xác định: \(\left\{ \begin{array}{l} - {x^2} + 5x - 6 \ge 0\\2x + 5 \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}2 \le x \le 3\\x \ne - \frac{5}{2}\end{array} \right.\) nên \(2 \le x \le 3\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có \(\sqrt {{x^2}} + x - 2025 = \left| x \right| + x - 2025.\)
Do \(x < 0\) nên \(\left| x \right| = - x\).
Do đó \(\sqrt {{x^2}} + x - 2025 = - x + x - 2025 = - 2025\).
Vậy với \(x < 0\) thì \(\sqrt {{x^2}} + x - 2025 = - 2025\).
Câu 2
Lời giải
Chọn D
Ta có \(B = \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} + \sqrt 3 = \left| {2 - \sqrt 3 } \right| + \sqrt 3 = 2 - \sqrt 3 + \sqrt 3 = 2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.