Cho biểu thức \(C = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{2}{{x - \sqrt x }}} \right):\frac{1}{{\sqrt x - 1}}\) với \(x > 0\,;\,\;x \ne 1.\) Giá trị nhỏ nhất của \(C\) là
Quảng cáo
Trả lời:
Ta có \(C = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{2}{{x - \sqrt x }}} \right):\frac{1}{{\sqrt x - 1}}\)
\( = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{2}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right)\left( {\sqrt x - 1} \right)\)
\( = \frac{{x + 2}}{{\sqrt x \left( {\sqrt x - 1} \right)}} \cdot \left( {\sqrt x - 1} \right) = \frac{{x + 2}}{{\sqrt x }}.\)
Khi đó \(C = \frac{{x + 2}}{{\sqrt x }}\) với \(x > 0\,;\,\;x \ne 1.\)
Xét \(C = \frac{{x + 2}}{{\sqrt x }} = \frac{x}{{\sqrt x }} + \frac{2}{{\sqrt x }} = \sqrt x + \frac{2}{{\sqrt x }}\).
Với \(x > 0\,;\,\;x \ne 1,\) áp dụng bất đẳng thức Cauchy cho hai số dương \(\sqrt x \) và \(\frac{2}{{\sqrt x }}\), ta được:
\(C = \sqrt x + \frac{2}{{\sqrt x }} \ge 2\sqrt 2 .\)
Dấu xảy ra khi \(\sqrt x = \frac{2}{{\sqrt x }}\) hay \(x = 2\) (thỏa mãn).
Vậy giá trị nhỏ nhất của \(C\) là \(2\sqrt 2 \) khi \(x = 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có \(\sqrt {{x^2}} + x - 2025 = \left| x \right| + x - 2025.\)
Do \(x < 0\) nên \(\left| x \right| = - x\).
Do đó \(\sqrt {{x^2}} + x - 2025 = - x + x - 2025 = - 2025\).
Vậy với \(x < 0\) thì \(\sqrt {{x^2}} + x - 2025 = - 2025\).
Câu 2
Lời giải
Chọn D
Ta có \(B = \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} + \sqrt 3 = \left| {2 - \sqrt 3 } \right| + \sqrt 3 = 2 - \sqrt 3 + \sqrt 3 = 2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.