Câu hỏi:

22/10/2025 90 Lưu

Cho biểu thức \(P = \left( {\frac{{2x + 1}}{{\sqrt {{x^3}}  - 1}} - \frac{1}{{\sqrt x  - 1}}} \right):\left( {1 - \frac{{x + 4}}{{x + \sqrt x  + 1}}} \right)\). Các giá trị nguyên của \(x\) để \(P\) nhận giá trị nguyên dương là

A. \(x = 1\,;\,\;x = 36\).   
B. \(x =  - 1\,;\,\;x = 36.\)                         
C. \(x = 4\,;\,\;x = 6\). 
D. \(x = 16\,;\,\;x = 36\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

ĐKXĐ: \[x \ge 0\,;\,\,x \ne 1\,;\,\,x \ne 9.\]

Ta có: \(P = \frac{{\sqrt x }}{{\sqrt x  - 3}} = \frac{{\sqrt x  - 3 + 3}}{{\sqrt x  - 3}} = 1 + \frac{3}{{\sqrt x  - 3}}.\)

Để \(P\) nhận giá trị là số nguyên dương thì \(\left\{ \begin{array}{l}P \in \mathbb{Z}\\P > 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}\frac{3}{{\sqrt x  - 3}} \in \mathbb{Z}\\1 + \frac{3}{{\sqrt x  - 3}} > 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}\frac{3}{{\sqrt x  - 3}} \in \mathbb{Z}\\\frac{{3 + \sqrt x  - 3}}{{\sqrt x  - 3}} > 0\end{array} \right..\)

Khi đó \(\left( {\sqrt x  - 3} \right) \in \)Ư\[\left( 3 \right)\] và \(\frac{{\sqrt x }}{{\sqrt x  - 3}} > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} (*)\)

Suy ra \(\left( {\sqrt x  - 3} \right) \in \left\{ {1\,;\,\,3} \right\}\)

• Với \(\sqrt x  - 3 = 1\) thì \(\sqrt x  = 4\) nên \(x = 16\) (thỏa mãn (*)).

• Với \(\sqrt x  - 3 = 3\) thì \(\sqrt x  = 6\) nên \(x = 36\) (thỏa mãn (*)).

Vậy các giá trị nguyên của \(x\) để \(P\) nhận giá trị nguyên dương là \(x = 16\,;\,\;x = 36\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. \(N = \frac{{{{\left( {\sqrt 3  + \sqrt 2 } \right)}^2}}}{{3 - 2}} + \frac{{{{\left( {\sqrt 3  - \sqrt 2 } \right)}^2}}}{{3 - 2}} = 5 + 2\sqrt 6  + 5 - 2\sqrt 6  = 10.\)

Do đó, kết quả phép tính \[N\] là một số nguyên.

b) Đúng. \(P = \frac{3}{{\sqrt 8  + \sqrt 5 }} + \frac{{5 - \sqrt 5 }}{{\sqrt 5  - 1}} = \frac{{3\left( {\sqrt 8  - \sqrt 5 } \right)}}{{{{\left( {\sqrt 8 } \right)}^2} - {{\left( {\sqrt 5 } \right)}^2}}} + \frac{{\sqrt 5 \left( {\sqrt 5  - 1} \right)}}{{\sqrt 5  - 1}}\)

\( = \sqrt 8  - \sqrt 5  + \sqrt 5  = \sqrt 8  = 2\sqrt 2 .\)

c) Sai. Vì \[N = 10\,;\,\,\,P = 2\sqrt 2 \]nên \[N < 5P\].

d) Sai. Ta có \[2{x^2} - 20\sqrt 2 x = 0\]

\[2x\left( {x - 10\sqrt 2 } \right) = 0\]

\[x = 0\] hoặc \[x = 10\sqrt 2 \].

Vậy giá trị của biểu thức \[N,\,\,P\] không phải là nghiệm của phương trình \[2{x^2} - 20\sqrt 2 x = 0.\]

Lời giải

a) Đúng. Ta có \[A = \sqrt {25{x^2}}  - 7x = 5\left| x \right| - 7x.\]

b) Sai. Vì \[x \ge 0\] nên \[A = 5\left| x \right| - 7x = 5x - 7x =  - 2x.\]  

c) Đúng. Thay \[x =  - 3\] vào biểu thức \[A = 5\left| x \right| - 7x = 5 \cdot 3 - 7 \cdot \left( { - 3} \right) = 36.\]

d) Sai. Với \[x < 0\] nên \[A =  - 5x - 7x =  - 12x\]. Để \[A = 24\] thì \[ - 12x = 24\] nên \[x =  - 2\].

Câu 7

A. \(N = 4\).               
B. \(N = \sqrt 5 \). 
C. \(N = \sqrt 5  + 4\).   
D. \(N = 2\sqrt 5 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP