Cho phương trình: \(\sqrt {2{x^2} + x - 6} = x + 2\).
a) Điều kiện của phương trình là \(x \ge 2.\)
b) Bình phương hai vế của phương trình ta được là \({x^2} - 3x - 10 = 0.\)
c) Phương trình có hai nghiệm.
d) Tổng bình phương các nghiệm của phương trình bằng \(20\).
Cho phương trình: \(\sqrt {2{x^2} + x - 6} = x + 2\).
a) Điều kiện của phương trình là \(x \ge 2.\)
b) Bình phương hai vế của phương trình ta được là \({x^2} - 3x - 10 = 0.\)
c) Phương trình có hai nghiệm.
d) Tổng bình phương các nghiệm của phương trình bằng \(20\).
Quảng cáo
Trả lời:
a) Sai. Điều kiện của phương trình là \(x + 2 \ge 0\) nên \(x \ge - 2.\)
b) Đúng. Bình phương hai vế ta được: \(2{x^2} + x - 6 = {x^2} + 4x + 4\)
\(2{x^2} - {x^2} + x - 4x - 6 - 4 = 0\)
\({x^2} - 3x - 10 = 0.\)
c) Đúng. Ta có \({x^2} - 3x - 10 = 0\)
\({x^2} - 5x + 2x - 10 = 0\)
\(x\left( {x - 5} \right) + 2\left( {x - 5} \right) = 0\)
\(\left( {x - 5} \right)\left( {x + 2} \right) = 0\)
\(x - 5 = 0\) hoặc \(x + 2 = 0\)
\(x = 5\) (TMĐK) hoặc \(x = - 2\) (TMĐK)
Vậy phương trình có hai nghiệm \(x = 5\,;\,\,x = - 2.\)
d) Sai. Tổng bình phương của hai nghiệm là \({5^2} + {\left( { - 2} \right)^2} = 25 + 4 = 29.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. \(N = \frac{{{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}}}{{3 - 2}} + \frac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}}}{{3 - 2}} = 5 + 2\sqrt 6 + 5 - 2\sqrt 6 = 10.\)
Do đó, kết quả phép tính \[N\] là một số nguyên.
b) Đúng. \(P = \frac{3}{{\sqrt 8 + \sqrt 5 }} + \frac{{5 - \sqrt 5 }}{{\sqrt 5 - 1}} = \frac{{3\left( {\sqrt 8 - \sqrt 5 } \right)}}{{{{\left( {\sqrt 8 } \right)}^2} - {{\left( {\sqrt 5 } \right)}^2}}} + \frac{{\sqrt 5 \left( {\sqrt 5 - 1} \right)}}{{\sqrt 5 - 1}}\)
\( = \sqrt 8 - \sqrt 5 + \sqrt 5 = \sqrt 8 = 2\sqrt 2 .\)
c) Sai. Vì \[N = 10\,;\,\,\,P = 2\sqrt 2 \]nên \[N < 5P\].
d) Sai. Ta có \[2{x^2} - 20\sqrt 2 x = 0\]
\[2x\left( {x - 10\sqrt 2 } \right) = 0\]
\[x = 0\] hoặc \[x = 10\sqrt 2 \].
Vậy giá trị của biểu thức \[N,\,\,P\] không phải là nghiệm của phương trình \[2{x^2} - 20\sqrt 2 x = 0.\]
Lời giải
a) Đúng. Ta có \[A = \sqrt {25{x^2}} - 7x = 5\left| x \right| - 7x.\]
b) Sai. Vì \[x \ge 0\] nên \[A = 5\left| x \right| - 7x = 5x - 7x = - 2x.\]
c) Đúng. Thay \[x = - 3\] vào biểu thức \[A = 5\left| x \right| - 7x = 5 \cdot 3 - 7 \cdot \left( { - 3} \right) = 36.\]
d) Sai. Với \[x < 0\] nên \[A = - 5x - 7x = - 12x\]. Để \[A = 24\] thì \[ - 12x = 24\] nên \[x = - 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
