Câu hỏi:

07/11/2025 53 Lưu

Cho mệnh đề sau: “Tứ giác \(ABCD\) là hình bình hành thì \(AB\parallel CD\)”. Phát biểu nào dưới đây là đúng?

A. Điều kiện cần để tứ giác \(ABCD\)\(AB\parallel CD\) là tứ giác \(ABCD\) là hình bình hành;
B. Điều kiện đủ để tứ giác \(ABCD\)\(AB\parallel CD\) là tứ giác \(ABCD\) là hình bình hành;
C. Tứ giác \(ABCD\)\(AB\parallel CD\) là điều kiện cần và đủ để tứ giác \(ABCD\) là hình bình hành;
D. Tứ giác \(ABCD\) là hình bình hành là điều kiện cần để \(AB\parallel CD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có:

Điều kiện đủ để tứ giác \(ABCD\)\(AB\parallel CD\) là tứ giác \(ABCD\) là hình bình hành.

Điều kiện cần để tứ giác \(ABCD\) là hình bình hành là tứ giác \(ABCD\)\(AB\parallel CD\).

Do đó A sai, D sai và B đúng.

Vì tứ giác \(ABCD\)\(AB\parallel CD\) chưa đủ điều kiện để khẳng định tứ giác \(ABCD\) là hình bình hành nên đáp án C sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác \(ABC\), có:

Áp dụng định lí sin trong tam giác \(ABC\), ta được:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R \Leftrightarrow R = \frac{a}{{2\sin A}} = \frac{b}{{2\sin B}} = \frac{c}{{2\sin C}}\).

Do đó A đúng, B sai.

Diện tích tam giác ABC là:

\(S = pr = \frac{{abc}}{{4R}} \Leftrightarrow R = \frac{{abc}}{{4S}} = \frac{{abc}}{{4pr}}\).

Do đó C và D đúng.

Lời giải

Hướng dẫn giải

Gọi số sản phẩm A là \(x\) (sản phẩm) và số sản phẩm B là \(y\) (sản phẩm) \(\left( {x,\,\,y \ge 0} \right)\).

Tổng thời gian lắp ráp \(x\) sản phẩm A và \(y\) sản phẩm B là: \(3x + 3y\) (giờ).

thời gian để lắp ráp không quá \(360\) giờ nên ta có: \(3x + 3y \le 360\) hay \(x + y \le 120\).

Tổng thời gian đóng gói \(x\) sản phẩm A và \(y\) sản phẩm B là: \(x + 2y\) (giờ).

thời gian để lắp ráp không quá 200 giờ nên ta có: \(x + 2y \le 200\).

Khi đó ta có hệ bất phương trình: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 120\\x + 2y \le 200\end{array} \right.\).

Biểu diễn miền nghiệm với \({d_1}:x + y = 120\)\({d_2}:x + 2y = 200\), ta được:

Thời gian (tính bằng giờ) cần thiết để lắp ráp và đóng gói hai loại sản phẩm A và B được thể hiện trong bảng dưới đây. Tổng số thời gian để lắp ráp và đóng gói sản phẩm lần lượt không quá 360 giờ, 200 giờ. (ảnh 1)

Miền nghiệm của hệ bất phương trình là miền trong của tứ giác OABC với O(0; 0), A(0; 100), B(40; 80), C(120; 0).

Goi F(x; y) là lợi nhuận thu được khi bán x sản phẩm A và y sản phẩm B.

Khi đó \(F\left( {x;y} \right) = 2x + 3y\)

Tại O(0; 0), có \(F\left( {0;0} \right) = 2.0 + 3.0 = 0\).

Tại A(0; 100), có: \(F\left( {0;100} \right) = 2.0 + 3.100 = 300\).

Tại B(40; 80), có: \(F\left( {40;80} \right) = 2.40 + 3.80 = 320\).

Tại C(120; 0), có: \(F\left( {120;0} \right) = 2.120 + 3.0 = 240\).

Vậy để thu được lợi nhuận lớn nhất là 320 triệu đồng thì cần sản xuất 40 sản phẩm A và 80 sản phẩm B.

Câu 3

A. \(\overrightarrow {BA} + \overrightarrow {CB} = \overrightarrow {CA} \);                                              
B. \(\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {BC} \);
C. \(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {BC} \);                                              
D. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. x2y0x+3y2
B. \(\left\{ \begin{array}{l}x - 2y \ge 0\\x + 3y \ge - 2\end{array} \right.\);     
C. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \le - 2\end{array} \right.\);     
D. \(\left\{ \begin{array}{l}x - 2y \ge 0\\x + 3y \le - 2\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {CB} \);                                 
B. \(\overrightarrow {AC} \);                          
C. \(\overrightarrow {MN} \);    
D. \(\overrightarrow {BN} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP