Trong các câu sau, mệnh đề nào là mệnh đề chứa biến?
Trong các câu sau, mệnh đề nào là mệnh đề chứa biến?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
+) Câu “∃x ∈ ℝ, x2 = – 2”: là một khẳng định sai vì không có giá trị của x nào thỏa mãn x2 = – 2. Do đó câu A là một mệnh đề.
+) Câu “\( - \frac{1}{2}\)x + 3 = 0”: có tính đúng sai phụ thuộc vào giá trị của x nên câu này là một mệnh đề chứa biến.
+) Câu “|x| ≥ 0 với mọi giá trị thực của x”: là một khẳng định đúng vì giá trị tuyệt đối của một số thực luôn luôn không âm. Do đó câu này là một mệnh đề.
+) Câu “∀x ∈ ℕ*, x2 + x > 0”: là một khẳng định đúng vì với số tự nhiên x khác 0 thì x2 + x luôn dương. Do đó câu này là một mệnh đề.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
+) Xét tam giác ABC, có AB = AC = a nên tam giác ABC cân tại A
\( \Rightarrow \widehat {ABC} = \widehat {ACB} = \frac{1}{2}\left( {180^\circ - \widehat {BAC}} \right) = \frac{1}{2}\left( {180^\circ - 120^\circ } \right) = 30^\circ \).
Áp dụng định lí cosin trong tam giác ABC, ta được:
\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.c{\rm{os}}\widehat {BAC}\)
\( \Leftrightarrow B{C^2} = {a^2} + {a^2} - 2.a.a.c{\rm{os120}}^\circ \)
\( \Leftrightarrow B{C^2} = 3{a^2}\)
\( \Leftrightarrow BC = \sqrt 3 a\)
\( \Rightarrow BM = \frac{{2BC}}{5} = \frac{{2\sqrt 3 a}}{5}\).
Áp dụng định lí cosin trong tam giác ABM, ta được:
\(A{M^2} = A{B^2} + B{M^2} - 2.AB.BM.c{\rm{os}}\widehat {ABM}\)
\( \Leftrightarrow A{M^2} = {a^2} + {\left( {\frac{{2\sqrt 3 a}}{5}} \right)^2} - 2.a.\frac{{2\sqrt 3 a}}{5}.c{\rm{os30}}^\circ \)
\( \Leftrightarrow A{M^2} = \frac{7}{{25}}{a^2}\)
\( \Leftrightarrow AM = \frac{{\sqrt 7 }}{5}a\).
Vậy \(AM = \frac{{\sqrt 7 }}{5}a\).
+) Diện tích tam giác \(ABM\) là:
\({S_{ABM}} = \frac{1}{2}.AB.BM.\sin \widehat {ABM} = \frac{1}{2}.a.\frac{{2\sqrt 3 a}}{5}.\sin 30^\circ = \frac{{\sqrt 3 }}{{10}}\) (đvdt).
Chu vi tam giác \(ABM\) là:
\(p = AB + AM + BM = a + \frac{{\sqrt 7 }}{5}a + \frac{{2\sqrt 3 }}{5}a = \frac{{1 + \sqrt 7 + 2\sqrt 3 }}{5}a\) (đvđd).
Bán kính đường tròn nội tiếp tam giác ABC là:
\(r = \frac{S}{p} = \left( {\frac{{\sqrt 3 }}{{10}}{a^2}} \right):\left( {\frac{{1 + \sqrt 7 + 2\sqrt 3 }}{5}a} \right) \approx 0,12a\).
Vậy bán kính đường tròn nội tiếp tam giác \(ABC\) là \(0,12a\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Áp dụng quy tắc ba điểm, ta có:
\(\overrightarrow {BA} + \overrightarrow {CB} = \overrightarrow {CB} + \overrightarrow {BA} = \overrightarrow {CA} \). Do đó A đúng.
\(\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {CA} + \overrightarrow {AB} = \overrightarrow {CB} \ne \overrightarrow {BC} \). Do đó B sai.
Áp dụng quy tắc hiệu hai vectơ:
\(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {CB} \ne \overrightarrow {BC} \). Do đó C sai.
Áp dụng quy tắc hình bình hành:
\(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \ne \overrightarrow {BC} \)(với D là điểm thỏa mãn ABDC là hình bình hành). Do đó D sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
