Câu hỏi:

07/11/2025 68 Lưu

Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc \(50^\circ 35'\). Tàu thứ nhất chạy với tốc độ \(25\) km/h, tàu thứ hai chạy với tốc độ \(35\) km/h. Hỏi sau \(1,2\) giờ hai tàu cách nhau bao nhiêu km?
Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

A. \(27,18\);                    
B. \(32,62\);                    
C. \(54,36\);  
D. \(63,91\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Giả sử sau \(1,2\) giờ thì tàu thứ nhất đến vị trí \(B\), tàu thứ hai đến được vị trí \(C\).

Sau \(1,2\) giờ:

Tàu thứ nhất đi được quãng đường \(AB\) dài: \(25\,\,.\,\,1,2 = 30\,\,\left( {km} \right)\).

Tàu thứ hai đi được quãng đường \(AC\) dài: \(35\,\,.\,\,1,2 = 42\,\,\left( {km} \right)\).

Xét tam giác ABC:

Áp dụng định lí cos trong tam giác ABC, ta được:

\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)

\( \Leftrightarrow B{C^2} = {30^2} + {42^2} - 2.30.42.\cos \left( {50^\circ 35'} \right)\)

\( \Leftrightarrow B{C^2} \approx 1\,\,063,91\)

\( \Leftrightarrow BC \approx 32,62\).

Vậy sau 1,2 giờ thì khoảng cách giữa hai tàu khoảng \(32,62\,\,km\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác \(ABC\), có:

Áp dụng định lí sin trong tam giác \(ABC\), ta được:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R \Leftrightarrow R = \frac{a}{{2\sin A}} = \frac{b}{{2\sin B}} = \frac{c}{{2\sin C}}\).

Do đó A đúng, B sai.

Diện tích tam giác ABC là:

\(S = pr = \frac{{abc}}{{4R}} \Leftrightarrow R = \frac{{abc}}{{4S}} = \frac{{abc}}{{4pr}}\).

Do đó C và D đúng.

Câu 2

A. x2y0x+3y2
B. \(\left\{ \begin{array}{l}x - 2y \ge 0\\x + 3y \ge - 2\end{array} \right.\);     
C. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \le - 2\end{array} \right.\);     
D. \(\left\{ \begin{array}{l}x - 2y \ge 0\\x + 3y \le - 2\end{array} \right.\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Lấy điểm (0; 1) thuộc vào miền nghiệm của hệ bất phương trình cần tìm.

Xét đường thẳng d1: \(x + 3y + 2 = 0 \Leftrightarrow x + 3y = - 2\)

Tại điểm (0; 1) có: \(0 + 3.1 = 3 > - 2\), miền nghiệm D1 của bất phương trình có bờ là đường thẳng d1 là nửa mặt phẳng chứa điểm (0; 1) và kể biên nên biểu diễn cho bất phương trình \(x + 3y \ge - 2\). (1)

Xét đường thẳng d2: \(x - 2y = 0\)

Tại điểm (0; 1) có: \(0 - 2.1 = - 2 < 0\), miền nghiệm D2 của bất phương trình có bờ là đường thẳng d2 là nửa mặt phẳng chứa điểm (0; 1) và kể biên nên biểu diễn cho bất phương trình \(x - 2y \le 0\). (2)

Từ (1) và (2) ta có hệ bất phương trình cần tìm là: \(\left\{ \begin{array}{l}x + 3y \ge - 2\\x - 2y \le 0\end{array} \right.\).

Câu 5

A. \(\overrightarrow {CB} \);                                 
B. \(\overrightarrow {AC} \);                          
C. \(\overrightarrow {MN} \);    
D. \(\overrightarrow {BN} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {BA} + \overrightarrow {CB} = \overrightarrow {CA} \);                                              
B. \(\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {BC} \);
C. \(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {BC} \);                                              
D. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP