Câu hỏi:

12/07/2024 886 Lưu

Chứng minh rằng hàm số:

fx=-2x nếu x0sinx2 nếu x<0

Không có đạo hàm tại x = 0 nhưng đạt cực đại tại điểm đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hàm số:

fx=-2x nếu x0sinx2 nếu x<0

Không có đạo hàm tại x = 0 vì:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, với x < 0 thì Giải sách bài tập Toán 12 | Giải sbt Toán 12

với x > 0 thì y’ = -2 < 0

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta thấy hàm số đạt cực đại tại x = 0 và yCD = y(0) = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số xác định và có đạo hàm với mọi x 1.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = 1 − 2 và đạt cực tiểu tại x = 1 + 2, ta có:

yCD = y(1 − 2) = −22

yCT = y(1 + 2) = 22

Lời giải

y = sin2x

Hàm số có chu kỳ T = π

Xét hàm số y=sin2x trên đoạn [0;π], ta có:

y' = 2cos2x

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó trên đoạn [0;π] , hàm số đạt cực đại tại π/4 , đạt cực tiểu tại 3π/4 và yCD = y(π/4) = 1; yCT = y(3π/4) = −1

Vậy trên R ta có:

yCD = y(π/4 + kπ) = 1;

yCT = y(3π/4 + kπ) = −1, kZ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP