Câu hỏi:

17/07/2020 9,899

Hệ phương trình x1y2+6=yx2+1y1x2+6=xy2+1có bao nhiêu cặp nghiệm (x; y) mà x > y

Đáp án chính xác

Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hệ đã cho xy2+6xy26=yx2+yyx2+6yx26=xy2+x

Trừ vế theo vế hai phương trình của hệ ta được:

2xy(y – x) +7 (x – y) + (x – y) (x + y) = 0

(x – y)(x + y – 2xy + 7) = 0 x=yx+y2xy+7=0

+ Nếu x = y thay vào hệ ta có: x25x+6=0x=y=2x=y=3

+ Nếu x + y – 2xy + 7 = 02x + 2y – 4xy + 14 = 0

(2x – 1) + 2y (1 – 2x) = −15(1 – 2x) (1 – 2y) = 15

Mặt khác khi cộng hai phương trình của hệ đã cho ta được:

x2+y25x5y+12=04x220x+25+4y220y+252=0

(2x5)2+(2y5)2=2(2x5)2+(2y5)2=2

Đặt a = 2x – 5; b = 2y – 5

Ta có a2+b2=2a+4b+4=14

a+b22ab=2ab+4a+b=1a+b=0ab=1a+b=8ab=31

Trường hợp 1: a+b=0ab=1(x; y) = (3; 2), (2; 3)

Trường hợp 2: a+b=8ab=31vô nghiệm

Vậy nghiệm của hệ đã cho là (x; y)  {(2; 2); (3; 3); (2; 3); (3; 2)}

Suy ra có một cặp nghiệm thỏa mãn yêu cầu bài toán là (x; y) = (3; 2)

Đáp án:A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hệ phương trình: x2y=5      1mxy=4    2. Tìm m để hệ phương trình có nghiệm duy nhất (x, y) trong đó x, y trái dấu.

Xem đáp án » 17/07/2020 12,601

Câu 2:

Cho hệ phương trình: x+my=m+1     1mx+y=3m1   2. Tìm số nguyên m sao cho hệ phương trình có nghiệm duy nhất (x; y) mà x, y đều là số nguyên.

Xem đáp án » 17/07/2020 11,780

Câu 3:

Biết rằng hệ phương trình x+yxy=3x+1+y+1=4có nghiệm duy nhất (x; y). Tính x + 2y

Xem đáp án » 17/07/2020 7,842

Câu 4:

Hệ phương trình x+y1+1xy=5x2+y21+1x2y2=9có số nghiệm là?

Xem đáp án » 17/07/2020 6,990

Câu 5:

Hệ phương trình x3y1+y+x2y22+y+xy330=0x2y+x1+y+y2+y11=0có bao nhiêu cặp nghiệm (x; y) mà x < 1?

Xem đáp án » 17/07/2020 3,916

Câu 6:

Hệ phương trình x2+x=2yy2+y=2xcó bao nghiêu cặp nghiệm (x; y)  (0; 0)?

Xem đáp án » 17/07/2020 2,900
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua