Câu hỏi:

06/08/2020 4,519

Cho M(2; 0), N(2; 2), P(–1; 3) là trung điểm của các cạnh BC, CA, AB của tam giác ABC. Tọa độ điểm B là:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tam  giác ABC có M; N; P lần lượt là trung điểm của BC; AC ;  AB nên PN và MN là đường trung bình của tam giác.

Suy ra: PN// BC và MN// AB.

Khi đó, tứ giác PNMB là hình bình hành.

Do đó, PB=NM với PB(x+1;  y3);NM(0;  2)

x+1=0y3=2x=1y=1B(1;1)

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khẳng định nào sau đây là sai?

Xem đáp án » 06/08/2020 6,404

Câu 2:

Trong các vectơ sau đây, có bao nhiêu cặp vectơ cùng phương? a-1; 2; b3/2; -3; c3; -5; d-2; 10/3

Xem đáp án » 06/08/2020 5,762

Câu 3:

Vectơ nào sau đây cùng phương với vectơ u(-3; 7)

Xem đáp án » 06/08/2020 5,269

Câu 4:

Vectơ nào sau đây cùng hướng với vectơ u(-3; 7)

Xem đáp án » 09/09/2020 5,052

Câu 5:

Cho các điểm M(m; -2), N(1; 4), P(2; 3). Giá trị của m để M, N, P thẳng hàng là:

Xem đáp án » 06/08/2020 4,347

Câu 6:

Cho tam giác ABC có A(–2; 2), B(6; –4), đỉnh C thuộc trục Ox. Tìm tọa độ trọng tâm G của tam giác ABC, biết rằng G thuộc trục Oy

Xem đáp án » 06/08/2020 4,147

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store