Câu hỏi:

12/07/2024 6,201

Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, trên tia đối của tia CD lấy điểm F sao cho CE = CF. Gọi M là giao điểm của hai đường thẳng DE và BF. Tìm quỹ tích điểm M khi E di động trên cạnh BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

- Phần thuận:

Xét hai tam giác vuông BFC, DCE có

BC = CD (do ABCD là hình vuông)

CE = CF (gt) nên BFC=DCE

Do đó, CBF^=CDE^

BEM^=CED^ (đối đỉnh) nên

900=CDE^+CED^=CBF^+BEM^BMD^=900

Vậy điểm M nằm trên đường tròn đường kính BD.

- Giới hạn:

+ Nếu EBMB

+ Nếu ECMC

Vậy điểm M chỉ nằm trên cung nhỏ BC của đường tròn đường kính BD.

- Phần đảo:

Lấy điểm M trên cung nhỏ BC của đường tròn đường kính BD. Nối MB, MD lần lượt cắt CD, BC tại F, E

Ta có BMD^=900 (góc nội tiếp chắn nửa đường tròn) nên BFC=DCE g.c.g do đó CF = CE.

- Kết luận: quỹ tích điểm M nằm trên cung nhỏ BC của đường tròn đường kính BD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hai tam giác ACD và BDC, ta có:

CD chung

ADC^=BCD^, vì ABCD là hình thang cân.

AD = BC, vì ABCD là hình thang cân.

Do đó:

ACD=BDCc.g.c => CAD^=CBD^

Vậy các điểm A, B nằm cùng phía đối với CD và thỏa mãn  nên bốn điểm A, B, C, D cùng thuộc một đường tròn.

Lời giải

Ta lần lượt thực hiện:

- Dựng đoạn AB = 4 cm và đường trung trực của AB

- Dựng tia Ax sao cho xAB^=600

- Dựng tia Ay vuông góc với Ax cắt tại O.

- Dựng đường tròn (O;OA) và chỉ lấy phần cung cùng phía với O, kí hiệu là AmB

- Lấy đối xứng cung qua Ab được cung Am1B.

Vậy hai cung  và  là cung chứa góc cần dựng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP