Câu hỏi:
12/07/2024 5,625Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, trên tia đối của tia CD lấy điểm F sao cho CE = CF. Gọi M là giao điểm của hai đường thẳng DE và BF. Tìm quỹ tích điểm M khi E di động trên cạnh BC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
- Phần thuận:
Xét hai tam giác vuông có
BC = CD (do ABCD là hình vuông)
CE = CF (gt) nên
Do đó,
Mà (đối đỉnh) nên
Vậy điểm M nằm trên đường tròn đường kính BD.
- Giới hạn:
+ Nếu
+ Nếu
Vậy điểm M chỉ nằm trên cung nhỏ của đường tròn đường kính BD.
- Phần đảo:
Lấy điểm M trên cung nhỏ của đường tròn đường kính BD. Nối MB, MD lần lượt cắt CD, BC tại F, E
Ta có (góc nội tiếp chắn nửa đường tròn) nên do đó CF = CE.
- Kết luận: quỹ tích điểm M nằm trên cung nhỏ của đường tròn đường kính BD.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD). Chứng minh rằng bốn điiểm A, B, C, D cùng thuộc một đường tròn.
Câu 3:
Cho tam giác ABC vuông ở A. vẽ hai nửa đường tròn đường kính AB và AC ra phía ngoài của tam giác. Qua A vẽ cát tuyến MAN (M thuộc nửa đường tròn đường kính AB, N thuộc nửa đường tròn đường kính AC)
a) Tứ giác BCNM là hình gì?
b) Tìm quỹ tích trung điểm I của đoạn MN khi cát tuyến MAN quay quanh A.
Câu 4:
Cho vuông ở A, có cạnh BC cố định. Gọi I là giao điểm của ba đường phân giác trong. Tìm quỹ tích I khi A thay đổi.
Câu 5:
Dựng tam giác ABC biết:
a) BC = 8cm, và đường cao AH = 6cm.
b) BC = 8cm, và đường cao AH = cm.
c) BC = 4cm, và đường cao AH = 9 cm.
về câu hỏi!