Đăng nhập
Đăng ký
Tính limx→01+2x.1+3x3.1+4x4−1x
A. 232
B. 24
C. 32
D. 3
Quảng cáo
1+2x.1+3x3.1+4x4−1=1+2x−1+2x+1+2x.1+3x3−1+2x.1+3x3+1+2x.1+3x3.1+4x4−1=1+2x−1+1+2x1+3x3−1+1+2x.1+3x3.1+4x4−1⇒limx→01+2x.1+3x3.1+4x4−1x=limx→01+2x−1x+limx→01+2x.1+3x3−1x+limx→01+2x.1+3x3.1+4x4−1x
Tính
limx→01+2x−1x=limx→01+2x−11+2x+1x1+2x+1=limx→02xx1+2x+1=limx→021+2x+1=21+1=1
limx→01+2x.1+3x3−1x=limx→01+2x.1+3x3−11+3x32+1+3x3+1x1+3x32+1+3x3+1=limx→01+2x.3xx1+3x32+1+3x3+1=limx→031+2x1+3x32+1+3x3+1=3.11+1+1=1
limx→01+2x.1+3x3.1+4x4−1x=limx→01+2x.1+3x3.1+4x4−11+4x43+1+4x42+1+4x4+1x1+4x43+1+4x42+1+4x4+1=limx→01+2x.1+3x3.4xx1+4x43+1+4x42+1+4x4+1=limx→041+2x.1+3x3.1+4x43+1+4x42+1+4x4+1=4.1.11+1+1+1=1
Vậy limx→01+2x.1+3x3.1+4x4−1x=1+1+1=3
Đáp án cần chọn là: D
Biết rằng a+b=4;limx→1a1−x−b1−x3 hữu hạn. Tính giới hạn L=limx→1b1−x3−a1−x
A. -1
B. 2
C. 1
D. -2
Tính limx→−∞x3x+22x3+x2−1
A. −32
B. 32
D. -32
Giá trị của giới hạn limx→021+x−8−x3x là
A. 56
B. 1312
C. 1112
D. -1312
Tìm tất cả các giá trị của a để limx→−∞2x2+1+ax là
A. a>2
B. a<2
C. a > 2
D. a < 2
Biết rằng limx→−32(x3+33)3−x2=a3+b. Tính a2+b2
A. 9
B. 25
C. 5
D. 13
Cho hàm số f(x)=x2+2x+4−x2−2x+4. Khẳng định nào sau đây là đúng?
A. Giới hạn của f(x) khi x→+∞ là 0
B. Giới hạn của f(x) khi x→-∞ là 2
C. Giới hạn của f(x) khi x→+∞ là 2
D. limx→−∞f(x)=−limx→−∞f(x)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận
Gọi 084 283 45 85
Hỗ trợ đăng ký khóa học tại Vietjack
Hoặc
Bạn đã có tài khoản? Đăng nhập
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
084 283 45 85
vietjackteam@gmail.com
về câu hỏi!