Cho đồ thị hàm số y = (P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình – 2m + 4 = 0 có hai nghiệm phân biệt.
Quảng cáo
Trả lời:
Đáp án A
Từ đồ thị hàm số ta thấy:
Với m – 2 > 0 m > 2 thì d cắt (P) tại hai điểm phân biệt hay phương trình (*) có hai nghiệm phân biệt khi m > 2
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Thay y = 5 vào phương trình đường thẳng d ta được 5 = 3 – 2x <=> x = −1
Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (−1; 5)
Thay x = −1; y = 5 vào hàm số y = (m – 1) ta được:
(m – 1). = 5 <=> m – 1 = 5 <=> m = 6
Vậy m = 6 là giá trị cần tìm
Lời giải
Đáp án C
Ta thấy hàm số y = (4 + 12m + 11) có:
a = 4 + 12m + 11 = (4 + 12m + 9) + 2 = + 22 > 0, m
Nên hàm số đồng biến khi x > 0 và nghịch biến khi x < 0. Suy ra C sai, D đúng
Và đồ thị hàm số nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.