Câu hỏi:

27/05/2021 730

Cho ΔABC, các tia phân giác của góc B và A cắt nhau tại O. Qua O kẻ đường thẳng song song với BC cắt AB tại M, cắt AC ở N. Cho BM=2cm;CN=3cm. Tính MN?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Vì O là giao điểm của hai tia phân giác của các góc ABC^ và BAC^ (gt)

Suy ra, CO là tia phân giác của ACB^ (tính chất 3 đường phân giác của tam giác)

ACO^=BCO^ (1) (tính chất tia phân giác của một góc)

BO là tia phân giác của ABC^(gt) OBA^=OBC^ (2) (tính chất tia phân giác của một góc)

Vì MN//BC(gt) MOB^=OBC^(3)NOC^=OCB^(4) (so le trong)

Từ (1) và (4) NOC^=NCO^ΔNOC cân tại N (dấu hiệu nhận biết tam giác cân)

NO=NC=3cm (tính chất tam giác cân)

Từ (2) và (3) MOB^=MBO^ΔMOB cân tại M (dấu hiệu nhận biết tam giác cân)

MB=MO=2cm (tính chất tam giác cân)

MN=MO+ON=2+3=5cm

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Gọi Ax là tia đối của tia AB. Ta có: BAD^=DAC^=60o nên CAx^=60o

Xét ΔABD có AE là tia phân giác của góc ngoài đỉnh A, BE là tia phân giác cả góc B và chúng cắt nhau tại E nên DE là tia phân giác góc ngoài của góc D

EDC^ là góc ngoài tại đỉnh D của tam giác BED nên B1^+BED^=EDC^

Do đó: BED^=D1^B1^=ADC^ABC^2=BAD^2=30o

Lời giải

Đáp án A

Xét ΔABC có: A^+ACB^+ABC^=180o (định lí tổng ba góc trong tam giác)

ACB^+ABC^=180oA^=180o80o=100o (1)

Vì CD là tia phân giác của ACB^ (gt) DCB^=ACB^2 (2) (tính chất tia phân giác )

Vì BE là tia phân giác của ABC^ (gt) CBE^=ABC^2 (3) (tính chất tia phân giác )

Từ (1),(2),(3)

DCB^+CBE^=ACB^2+ABC^2=ACB^+ABC^2=100o:2=50o

Hay ICB^+IBC^=50o(*)

Xét ΔBIC có: ICB^+IBC^+BIC^=180o(**) (định lí tổng ba góc trong tam giác)

Từ (*) và (**) BIC^=180o(ICB^+IBC^)=180o50o=130o

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay