Câu hỏi:

27/05/2021 1,424

Cho tam giác ABC có AD thỏa mãn BD=2DC. Trên tia đối tia CB lấy điểm E sao cho BC=CE. Khi đó tam giác ADE là tam giác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Kéo dài AC lấy điểm sao cho CM=AC, kéo dài AD cắt BM tại H

Vì AD là tia phân giác của BAM^ nên BAH^=HAM^=BAM^2 (tính chất tia phân giác)

Xét ΔABM có: BC là đường trung tuyến ứng với cạnh AM, BD=2DC (gt)

Do đó D là trọng tâm ΔABM

Suy ra AD là đường trung tuyến của ΔABM

Xét ΔABM có AD là đường trung tuyến đồng thời là đường phân giác

Do đó ΔABM cân tại A ABM^=AMB^ (tính chất tam giác cân)

Trong ΔABM có BAM^+ABM^+AMB^=180o (định lí tổng ba góc của tam giác)

BAM^+2.ABM^=180oBAM^2+ABM^=90o

Hay BAH^+ABH^=90o

Xét ΔABH có:

BAH^+ABH^+AHB^=180o (định lí tổng ba góc của tam giác)

AHB^=180o(BAH^+ABH^)=180o90o=90o

AHBM hay ADBM

Xét ΔACE và ΔMCB có:

AC=CMBC=CE(gt)

ACE^=MCB^ (hai góc đối đỉnh)

ΔACE=ΔMCB(c.g.c)AEC^=MBC^ (hai góc tương ứng)

AEC^;MBC^ ở vị trí so le trong

AE//BM (dấu hiệu nhận biết hai đường thẳng song song)

Mà ADBMADAE (quan hệ từ vuông góc tới song song)

Do đó ΔADE vuông tại A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Gọi Ax là tia đối của tia AB. Ta có: BAD^=DAC^=60o nên CAx^=60o

Xét ΔABD có AE là tia phân giác của góc ngoài đỉnh A, BE là tia phân giác cả góc B và chúng cắt nhau tại E nên DE là tia phân giác góc ngoài của góc D

EDC^ là góc ngoài tại đỉnh D của tam giác BED nên B1^+BED^=EDC^

Do đó: BED^=D1^B1^=ADC^ABC^2=BAD^2=30o

Lời giải

Đáp án A

Xét ΔABC có: A^+ACB^+ABC^=180o (định lí tổng ba góc trong tam giác)

ACB^+ABC^=180oA^=180o80o=100o (1)

Vì CD là tia phân giác của ACB^ (gt) DCB^=ACB^2 (2) (tính chất tia phân giác )

Vì BE là tia phân giác của ABC^ (gt) CBE^=ABC^2 (3) (tính chất tia phân giác )

Từ (1),(2),(3)

DCB^+CBE^=ACB^2+ABC^2=ACB^+ABC^2=100o:2=50o

Hay ICB^+IBC^=50o(*)

Xét ΔBIC có: ICB^+IBC^+BIC^=180o(**) (định lí tổng ba góc trong tam giác)

Từ (*) và (**) BIC^=180o(ICB^+IBC^)=180o50o=130o

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay