Câu hỏi:

06/02/2021 1,382

#THPT Chuyên ĐH Vinh lần 1 - năm 2017 2018~Trong không gian Oxyz cho mặt phẳng (α): x – z – 3 = 0 và điểm M (1;1;1). Gọi A là điểm thuộc tia Oz. Gọi B là hình chiếu của A lên (α). Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Gọi A (0;0;a). Đường thẳng AB qua A và vuông góc với (α) có phương trình 

B là hình chiếu của A lên (α) nên tọa độ B thỏa mãn hệ

Tam giác MAB cân tại M nên

·Nếu a=-3 thì tọa độ A (0;0;-3) và B (0;0;-3) trùng nhau, loại.

·Nếu a=3 thì tọa độ A (0;0;3), B (3;0;0).

Diện tích tam giác MAB bằng 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi I = d . Do I nên I (2t + 1; t – 1; -t). Suy ra 

Suy ra , từ đó suy ra d có một vectơ chỉ phương là  và đi qua M (2;1; 0) nên có phương trình:

Lời giải

Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó

Ta có mặt phẳng (ABCD) có vectơ pháp tuyến là , mặt phẳng (GMN) có vectơ pháp tuyến là

Gọi (α) là góc giữa hai mặt phẳng (GMN) và (ABCD), ta có

Gọi φ là góc giữa (GMN) và (ABCD)

Gọi E, F lần lượt là hình chiếu của M và N lên (ABCD). Suy ra E, F lần lượt là trung điểm của HC, HD.

Gọi H, I lần lượt là trung điểm của AB, CD.

Mà d (SIH) nên góc giữa góc giữa hai mặt phẳng (GMN) và (ABCD) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP