Câu hỏi:
06/02/2021 1,621Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, AB=a, BC = a, SA=a và SA vuông góc với đáy ABCD. Tính sin α, với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt hệ trục tọa độ Oxyz như hình vẽ.
Khi đó, ta có A (0;0;0), B (a;0;0), D (0; a√3 ; 0), S (0;0;a).
Ta có , nên đường thẳng BD có vectơ chỉ phương là .
Như vậy, mặt phẳng (SBC) có vectơ pháp tuyến là
Do đó, α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC) thì
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;1;0) và đường thẳng .Phương trình tham số của đường thẳng d đi qua M, cắt và vuông góc với Δ là:
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;2;3) và mặt phẳng (P): 2x+y-4z+1=0, đường thẳng d đi qua điểm A, song song với mặt phẳng (P), đồng thời cắt trục Oz. Viết phương trình tham số của đường thẳng d.
Câu 3:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD. Tính côsin của góc giữa hai mặt phẳng (GMN) và (ABCD).
Câu 4:
Trong không gian tọa độ Oxyz, cho tam giác ABC biết A (1;0;-1), B (2;3;-1), C (-2;1;1). Phương trình đường thẳng đi qua tâm đường tròn ngoại tiếp của tam giác ABC và vuông góc với mặt phẳng (ABC) là:
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho (P): x - 2y + 2z - 5 = 0, A (-3;0;1), B (1;-1;3). Viết phương trình đường thẳng d đi qua A, song song với (P) sao cho khoảng cách từ B đến d là lớn nhất.
Câu 6:
Trong không gian Oxyz, cho điểm M (1;1;2). Mặt phẳng (P) qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất. Gọi là một véc tơ pháp tuyến của (P). Tính S = a³ - 2b.
Câu 7:
Trong không gian Oxyz, cho bốn đường thẳng ;;; . Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
về câu hỏi!