Câu hỏi:
20/01/2021 1,322Biết rằng tồn tại giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: x4 – 2(m + 1)x2 + 2m + 1 = 0, tính lập phương của giá trị đó.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Chọn C.
Đặt t = x2.
Khi đó ta có phương trình: t2 – 2(m + 1)t + 2m + 1 = 0 (*)
Phương trình đã cho có nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt
+ Với điều kiện trên thì phương trình (*) có hai nghiệm dương phân biệt là t1 < t2.
Khi đó phương trình đã cho có bốn nghiệm phân biệt là .
Bốn nghiệm này lập thành một cấp số cộng khi
Theo định lý Vi-ét ta có: t1 + t2 = 2(m + 1) ; t1.t2 = 2m + 1.
Suy ra ta có hệ phương trình
Chỉ có m = 4 thỏa mãn điều kiện .
Do đó 43 = 64.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho dãy số (un) với .Số hạng tổng quát của dãy số là số hạng nào dưới đây?
Câu 2:
Cho dãy số (un) với . Số hạng tổng quát của dãy số là số hạng nào dưới đây?
Câu 3:
Bốn số nguyên lập thành cấp số cộng, biết tổng của chúng bằng 20, tổng nghịch đảo của chúng bằng 25/24. Tìm công sai d?
Câu 5:
Cho cấp số cộng (un); công sai d. Biết u4 + u8 + u12 + u16 = 224. Tính: S19
Câu 6:
Cho cấp số cộng (un); công sai d. Biết u2 + u22 = 40. Tính S23
Câu 7:
Cho tam giác ABC có độ dài các cạnh là a; b; c theo thứ tự lập thành một cấp số cộng. Biết , giá trị x + y là:
về câu hỏi!