Câu hỏi:

13/07/2024 1,170

Cho tam giác ABC có I là giao điểm của ba đường phân giác. M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB. Chứng minh rằng: IA, IB, IC lần lượt là đường trung trực của các đoạn thẳng NP, PM, MN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

+) Chứng minh IA là đường trung trực của NP.

Do IP = IN nên I thuộc đường trung trực của NP.

Xét ΔAIP vuông tại P và ΔAIN vuông tại N có:

AI chung.

IP = IN (theo giả thiết).

Do đó ΔAIP=ΔAIN (cạnh huyền - cạnh góc vuông).

Suy ra AP = AN (hai cạnh tương ứng).

Do AP = AN nên A thuộc đường trung trực của NP.

Do đó IA là đường trung trực của NP.

+) Chứng minh IB là đường trung trực của PM.

Do IP = IM nên I thuộc đường trung trực của PM.

Xét ΔBIP vuông tại P và ΔBIM vuông tại M có:

Cạnh BI chung.

IP = IM (theo giả thiết).

Do đó ΔBIP=ΔBIM (cạnh huyền - cạnh góc vuông).

Suy ra BP = BM (hai cạnh tương ứng).

Do BP = BM nên B thuộc đường trung trực của PM.

Do đó IB là đường trung trực của PM.

+) Chứng minh IC là đường trung trực của MN.

Do IM = IN nên I thuộc đường trung trực của MN.

Xét ΔCIM vuông tại M và ΔCIN vuông tại N có:

Cạnh CI chung.

IM = IN (theo giả thiết).

Do đó ΔCIM=ΔCIN (cạnh huyền - cạnh góc vuông).

Suy ra CM = CN (hai cạnh tương ứng).

Do CM = CN nên C thuộc đường trung trực của MN.

Do đó IC là đường trung trực của MN.

Vậy IA, IB, IC lần lượt là đường trung trực của các đoạn thẳng NP, PM, MN.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Tam giác ABC có I là giao điểm ba đường phân giác nên I cách đều 3 cạnh của tam giác ABC.

Do đó IM = IN = IP.

Do IM = IN nên tam giác IMN cân tại I.

Do IN = IP nên tam giác INP cân tại I.

Do IP = IM nên tam giác IPM cân tại I.

Vậy các tam giác IMN, INP, IPM là tam giác cân.

b) Xét ΔAIP vuông tại P và ΔAIN vuông tại N có:

AI chung.

IP = IN (theo giả thiết).

Do đó ΔAIP=ΔAIN (cạnh huyền - cạnh góc vuông).

Suy ra AP = AN (hai cạnh tương ứng).

Tam giác ANP có AP = AN nên tam giác ANP cân tại A.

Xét ΔBIP vuông tại P và ΔBIM vuông tại M có:

BI chung.

IP = IM (theo giả thiết).

Do đó ΔBIP=ΔBIM (cạnh huyền - cạnh góc vuông).

Suy ra BP = BM (hai cạnh tương ứng).

Tam giác BPM có BP = BM nên tam giác BPM cân tại B.

Xét ΔCIM vuông tại M và ΔCIN vuông tại N có:

CI chung.

IM = IN (theo giả thiết).

Do đó ΔCIM=ΔCIN (cạnh huyền - cạnh góc vuông).

Suy ra CM = CN (hai cạnh tương ứng).

Tam giác CMN có CM = CN nên tam giác CMN cân tại C.

Vậy các tam giác ANP, BPM, CMN là tam giác cân.

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay