Câu hỏi:
13/07/2024 7,476Tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB.
a) Các tam giác IMN, INP, IPM có là tam giác cân không? Vì sao?
b) Các tam giác ANP, BPM, CMN có là tam giác cân không? Vì sao?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a) Tam giác ABC có I là giao điểm ba đường phân giác nên I cách đều 3 cạnh của tam giác ABC.
Do đó IM = IN = IP.
Do IM = IN nên tam giác IMN cân tại I.
Do IN = IP nên tam giác INP cân tại I.
Do IP = IM nên tam giác IPM cân tại I.
Vậy các tam giác IMN, INP, IPM là tam giác cân.
b) Xét vuông tại P và vuông tại N có:
AI chung.
IP = IN (theo giả thiết).
Do đó (cạnh huyền - cạnh góc vuông).
Suy ra AP = AN (hai cạnh tương ứng).
Tam giác ANP có AP = AN nên tam giác ANP cân tại A.
Xét vuông tại P và vuông tại M có:
BI chung.
IP = IM (theo giả thiết).
Do đó (cạnh huyền - cạnh góc vuông).
Suy ra BP = BM (hai cạnh tương ứng).
Tam giác BPM có BP = BM nên tam giác BPM cân tại B.
Xét vuông tại M và vuông tại N có:
CI chung.
IM = IN (theo giả thiết).
Do đó (cạnh huyền - cạnh góc vuông).
Suy ra CM = CN (hai cạnh tương ứng).
Tam giác CMN có CM = CN nên tam giác CMN cân tại C.
Vậy các tam giác ANP, BPM, CMN là tam giác cân.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC có ba đường phân giác cắt nhau tại I. Chứng minh:
a) ;
b) .
Câu 3:
Tam giác ABC có ba đường phân giác cắt nhau tại I và AB < AC.
a) Chứng minh ;
b) So sánh IB và IC.
Câu 4:
Trong tam giác ABC, tia phân giác của góc A cắt cạnh BC tại điểm D (Hình 110). Các đầu mút của đoạn thẳng AD có đặc điểm gì?
Câu 5:
Quan sát giao điểm I của ba đường phân giác trong tam giác ABC (Hình 116) và so sánh độ dài ba đoạn thẳng IM, IN, IP.
Câu 6:
Quan sát các đường phân giác AD, BE, CK của tam giác ABC (Hình 114), cho biết ba đường phân giác đó có cùng đi qua một điểm hay không.
về câu hỏi!