Câu hỏi:
04/07/2022 539
Cho hai tam giác ABC và MNP có: AB = MN, BC = NP, CA = PM. Gọi I và K lần lượt là trung điểm của BC và NP. Chứng minh: AI = MK.
Cho hai tam giác ABC và MNP có: AB = MN, BC = NP, CA = PM. Gọi I và K lần lượt là trung điểm của BC và NP. Chứng minh: AI = MK.
Câu hỏi trong đề: Bài tập cuối chương 7 có đáp án !!
Quảng cáo
Trả lời:
Vậy AI = MK.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo tính chất đường xiên và đường vuông góc kẻ từ một điểm đến một đường thẳng, ta thấy DA nhỏ nhất khi D là chân đường vuông góc kẻ từ A đến BC.
Ta xác định điểm D như sau:
Bước 1. Kẻ hai đường cao xuất phát từ B và C của tam giác ABC.
Bước 2. Gọi H là giao điểm của hai đường cao xuất phát từ B và C của tam giác ABC.
Bước 3. Từ H kẻ đường vuông góc với BC, đường vuông góc này cắt BC tại một điểm.
Điểm đó chính là điểm D cần tìm.
Ta có hình vẽ sau:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.