Câu hỏi:
11/07/2024 3,552Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi tọa độ điểm C(xC; yC), tọa độ điểm D(xD; yD).
Khi đó ta có: \(\overrightarrow {AI} = \left( {4 - \left( { - 3} \right);\,2 - 1} \right) = \left( {7;\,\,1} \right)\), \(\overrightarrow {IC} = \left( {{x_C} - 4;\,{y_C} - 2} \right)\).
Vì I là tâm đối xứng của hình bình hành ABCD nên I là trung điểm của AC, do đó \(\overrightarrow {AI} = \overrightarrow {IC} \)
\( \Leftrightarrow \overrightarrow {IC} = \left( {7;\,\,1} \right) \Leftrightarrow \left\{ \begin{array}{l}{x_C} - 4 = 7\\{y_C} - 2 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 11\\{y_C} = 3\end{array} \right.\).
Vậy tọa độ điểm C là C(11; 3).
Ta có: \(\overrightarrow {AB} = \left( {\left( { - 1} \right) - \left( { - 3} \right);3 - 1} \right) = \left( {2;\,2} \right)\), \(\overrightarrow {DC} = \left( {11 - {x_D};\,\,3 - {y_D}} \right)\).
Vì ABCD là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \)\( \Leftrightarrow \overrightarrow {DC} = \left( {2;\,\,2} \right)\)
\( \Leftrightarrow \left\{ \begin{array}{l}11 - {x_D} = 2\\3 - {y_D} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 9\\{y_D} = 1\end{array} \right.\).
Vậy tọa độ điểm D là D(9; 1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Tìm các số thực a và b sao cho mỗi cặp vectơ sau bằng nhau:
\(\overrightarrow u = \left( {2a - 1; - 3} \right)\) và \(\overrightarrow v = \left( {3;\,4b + 1} \right)\);
Câu 4:
Biểu diễn vectơ \(\overrightarrow {OB} \) qua hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).
Câu 5:
Trong mặt phẳng toạ độ Oxy, cho ba điểm A(2; 3), B(– 1; 1), C(3; – 1).
Tìm toạ độ điểm M sao cho \(\overrightarrow {AM} = \overrightarrow {BC} \).
Câu 6:
về câu hỏi!