Câu hỏi:
11/07/2024 3,255Tìm các số thực a và b sao cho mỗi cặp vectơ sau bằng nhau:
\(\overrightarrow u = \left( {2a - 1; - 3} \right)\) và \(\overrightarrow v = \left( {3;\,4b + 1} \right)\);
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Hai vectơ bằng nhau khi hoành độ của vectơ này bằng hoành độ của vectơ kia và tung độ của vectơ này bằng tung độ của vectơ kia.
Ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\).
Vậy a = 2 và b = – 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Biểu diễn vectơ \(\overrightarrow {OB} \) qua hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).
Câu 5:
Trong mặt phẳng toạ độ Oxy, cho ba điểm A(2; 3), B(– 1; 1), C(3; – 1).
Tìm toạ độ điểm M sao cho \(\overrightarrow {AM} = \overrightarrow {BC} \).
Câu 6:
về câu hỏi!