Câu hỏi:
04/07/2022 1,097B. Bài tập
Tìm tọa độ của các vectơ trong Hình 16 và biểu diễn mỗi vectơ đó qua hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Từ O, vẽ các đường thẳng song song với giá của các vectơ \(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c ,\,\,\overrightarrow d \).
Trên các đường thẳng đó, lần lượt lấy các điểm A, B, C, D sao cho \(\overrightarrow {OA} = \overrightarrow a \), \(\overrightarrow {OB} = \overrightarrow b \), \[\overrightarrow {OC} = \overrightarrow c \], \(\overrightarrow {OD} = \overrightarrow d \) (như hình vẽ trên).
Từ các điểm A, B, C, D, kẻ các đường thẳng vuông góc với các trục tọa độ Ox, Oy để xác định tọa độ các điểm này. Ta xác định được tọa độ của các điểm là: A(– 5; – 3), B(3; – 4), C(– 1; 3) và D(2; 5).
+) Ta có \(\overrightarrow {OA} = \overrightarrow a \) và tọa độ A là A(– 5; – 3), tọa độ của vectơ \(\overrightarrow {OA} \) chính là tọa độ của điểm A, do đó tọa độ của vectơ \(\overrightarrow a \) là (– 5; – 3) và \(\overrightarrow a = \left( { - 5} \right).\overrightarrow i + \left( { - 3} \right).\overrightarrow j = - 5\overrightarrow i - 3\overrightarrow j \).
+) Ta có \(\overrightarrow {OB} = \overrightarrow b \) và tọa độ của B(3; – 4), tọa độ của vectơ \(\overrightarrow {OB} \) chính là tọa độ của điểm B, do đó tọa độ của vectơ \(\overrightarrow b \)là (3; – 4) và \(\overrightarrow b = 3.\overrightarrow i + \left( { - 4} \right).\overrightarrow j = 3\overrightarrow i - 4\overrightarrow j \).
+) Ta có \[\overrightarrow {OC} = \overrightarrow c \] và tọa độ của C(– 1; 3), tọa độ của vectơ \(\overrightarrow {OC} \) chính là tọa độ của điểm C, do đó tọa độ của vectơ \(\overrightarrow c \)là (– 1; 3) và \(\overrightarrow c = \left( { - 1} \right).\overrightarrow i + 3.\overrightarrow j = - \overrightarrow i + 3\overrightarrow j \).
+) Ta có \(\overrightarrow {OD} = \overrightarrow d \) và tọa độ của D(2; 5), tọa độ của vectơ \(\overrightarrow {OD} \) chính là tọa độ của điểm D, do đó tọa độ của vectơ \(\overrightarrow d \)là (2; 5) và \(\overrightarrow d = 2.\overrightarrow i + 5.\overrightarrow j = 2\overrightarrow i + 5\overrightarrow j \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Tìm các số thực a và b sao cho mỗi cặp vectơ sau bằng nhau:
\(\overrightarrow u = \left( {2a - 1; - 3} \right)\) và \(\overrightarrow v = \left( {3;\,4b + 1} \right)\);
Câu 5:
Trong mặt phẳng toạ độ Oxy, cho ba điểm A(2; 3), B(– 1; 1), C(3; – 1).
Tìm toạ độ điểm M sao cho \(\overrightarrow {AM} = \overrightarrow {BC} \).
Câu 6:
Biểu diễn vectơ \(\overrightarrow {OB} \) qua hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).
Câu 7:
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
28 câu Trắc nghiệm Mệnh đề có đáp án
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
80 câu trắc nghiệm Vectơ cơ bản (P1)
về câu hỏi!