Câu hỏi:

04/07/2022 2,565

B. Bài tập

Tìm tọa độ của các vectơ trong Hình 16 và biểu diễn mỗi vectơ đó qua hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Media VietJack

Từ O, vẽ các đường thẳng song song với giá của các vectơ \(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c ,\,\,\overrightarrow d \).

Trên các đường thẳng đó, lần lượt lấy các điểm A, B, C, D sao cho \(\overrightarrow {OA} = \overrightarrow a \), \(\overrightarrow {OB} = \overrightarrow b \), \[\overrightarrow {OC} = \overrightarrow c \], \(\overrightarrow {OD} = \overrightarrow d \) (như hình vẽ trên).

Từ các điểm A, B, C, D, kẻ các đường thẳng vuông góc với các trục tọa độ Ox, Oy để xác định tọa độ các điểm này. Ta xác định được tọa độ của các điểm là: A(– 5; – 3), B(3; – 4), C(– 1; 3) và D(2; 5).

+) Ta có \(\overrightarrow {OA} = \overrightarrow a \) và tọa độ A là A(– 5; – 3), tọa độ của vectơ \(\overrightarrow {OA} \) chính là tọa độ của điểm A, do đó tọa độ của vectơ \(\overrightarrow a \) là (– 5; – 3) và \(\overrightarrow a = \left( { - 5} \right).\overrightarrow i + \left( { - 3} \right).\overrightarrow j = - 5\overrightarrow i - 3\overrightarrow j \).

+) Ta có \(\overrightarrow {OB} = \overrightarrow b \) và tọa độ của B(3; – 4), tọa độ của vectơ \(\overrightarrow {OB} \) chính là tọa độ của điểm B, do đó tọa độ của vectơ \(\overrightarrow b \)là (3; – 4) và \(\overrightarrow b = 3.\overrightarrow i + \left( { - 4} \right).\overrightarrow j = 3\overrightarrow i - 4\overrightarrow j \).

+) Ta có \[\overrightarrow {OC} = \overrightarrow c \] và tọa độ của C(– 1; 3), tọa độ của vectơ \(\overrightarrow {OC} \) chính là tọa độ của điểm C, do đó tọa độ của vectơ \(\overrightarrow c \)là (– 1; 3) và \(\overrightarrow c = \left( { - 1} \right).\overrightarrow i + 3.\overrightarrow j = - \overrightarrow i + 3\overrightarrow j \).

+) Ta có \(\overrightarrow {OD} = \overrightarrow d \) và tọa độ của D(2; 5), tọa độ của vectơ \(\overrightarrow {OD} \) chính là tọa độ của điểm D, do đó tọa độ của vectơ \(\overrightarrow d \)là (2; 5) và \(\overrightarrow d = 2.\overrightarrow i + 5.\overrightarrow j = 2\overrightarrow i + 5\overrightarrow j \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi tọa độ điểm A(xA; yA), B(xB; yB), C(xC; yC).

Ta có: \(\overrightarrow {AP} = \left( {6 - {x_A};\,2 - {y_A}} \right)\), \(\overrightarrow {PB} = \left( {{x_B} - 6;\,{y_B} - 2} \right)\), \(\overrightarrow {BM} = \left( {1 - {x_B};\,\left( { - 2} \right) - {y_B}} \right)\), \(\overrightarrow {MC} = \left( {{x_C} - 1;{y_C} - \left( { - 2} \right)} \right)\), \[\overrightarrow {AN} = \left( {4 - {x_A};\,\left( { - 1} \right) - {y_A}} \right)\], \(\overrightarrow {NC} = \left( {{x_C} - 4;\,{y_c} - \left( { - 1} \right)} \right)\).

Vì P là trung điểm của AB nên \(\overrightarrow {AP} = \overrightarrow {PB} \Leftrightarrow \left\{ \begin{array}{l}6 - {x_A} = {x_B} - 6\\2 - {y_A} = {y_B} - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 12 - {x_B}\\{y_A} = 4 - {y_B}\end{array} \right.\) (1)

Vì M là trung điểm của BC nên \(\overrightarrow {BM} = \overrightarrow {MC} \Leftrightarrow \left\{ \begin{array}{l}1 - {x_B} = {x_C} - 1\\\left( { - 2} \right) - {y_B} = {y_C} - \left( { - 2} \right)\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 2 - {x_C}\\{y_B} = - 4 - {y_C}\end{array} \right.\)(2)

Vì N là trung điểm của AC nên \(\overrightarrow {AN} = \overrightarrow {NC} \Leftrightarrow \left\{ \begin{array}{l}4 - {x_A} = {x_C} - 4\\\left( { - 1} \right) - {y_A} = {y_C} - \left( { - 1} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 8 - {x_C}\\{y_A} = - 2 - {y_C}\end{array} \right.\)(3)

Từ (1) và (3) suy ra: \(\left\{ \begin{array}{l}12 - {x_B} = 8 - {x_C}\\4 - {y_B} = - 2 - {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4 + {x_C}\\{y_B} = 6 + {y_C}\end{array} \right.\) (4)

Từ (2) và (4) suy ra: \(\left\{ \begin{array}{l}2 - {x_C} = 4 + {x_C}\\ - 4 - {y_C} = 6 + {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{x_C} = - 2\\2{y_C} = - 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = - 1\\{y_C} = - 5\end{array} \right.\).

Vậy tọa độ điểm C là C(– 1; – 5).

Thay tọa độ điểm C vào (3) ta được: \(\left\{ \begin{array}{l}{x_A} = 8 - \left( { - 1} \right) = 9\\{y_A} = - 2 - \left( { - 5} \right) = 3\end{array} \right.\).

Thay tọa độ điểm C vào (4) ta được: \(\left\{ \begin{array}{l}{x_B} = 4 + \left( { - 1} \right) = 3\\{y_B} = 6 + \left( { - 5} \right) = 1\end{array} \right.\).

Vậy tọa độ các điểm A, B, C là A(9; 3), B(3; 1) và C(– 1; – 5).

Lời giải

Hướng dẫn giải

Ta có: \(\overrightarrow {BC} = \left( {3 - \left( { - 1} \right);\,\left( { - 1} \right) - 1} \right)\). Do đó \(\overrightarrow {BC} = \left( {4;\,\, - 2} \right)\).

Gọi tọa độ điểm M(x; y), khi đó \(\overrightarrow {AM} = \left( {x - 2;y - 3} \right)\).

\(\overrightarrow {AM} = \overrightarrow {BC} \)\( \Leftrightarrow \overrightarrow {AM} = \left( {4; - 2} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 4\\y - 3 = - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 1\end{array} \right.\).

Vậy tọa độ điểm M cần tìm là M(6; 1).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP