Câu hỏi:

04/07/2022 9,909

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).

Tìm tọa độ các điểm A, B, C.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi tọa độ các điểm A(xA; yA), B(xB; yB), C(xC; yC).

Vì P(1; 3) là trung điểm của cạnh AB nên

\(\left\{ \begin{array}{l}\frac{{{x_A} + {x_B}}}{2} = 1\\\frac{{{y_A} + {y_B}}}{2} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 2\\{y_A} + {y_B} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 2 - {x_B}\\{y_A} = 6 - {y_B}\end{array} \right.\)   (1)

Vì N(4; 2) là trung điểm của cạnh CA nên \(\left\{ \begin{array}{l}\frac{{{x_A} + {x_C}}}{2} = 4\\\frac{{{y_A} + {y_C}}}{2} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_C} = 8\\{y_A} + {y_C} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 8 - {x_C}\\{y_A} = 4 - {y_C}\end{array} \right.\)   (2)

Từ (1) và (2) suy ra: \(\left\{ \begin{array}{l}2 - {x_B} = 8 - {x_C}\\6 - {y_B} = 4 - {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = - 6 + {x_C}\\{y_B} = 2 + {y_C}\end{array} \right.\)   (3)

Vì M(2; 0) là trung điểm của BC nên

\(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = 2\\\frac{{{y_B} + {y_C}}}{2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 4\\{y_B} + {y_C} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4 - {x_C}\\{y_B} = - {y_C}\end{array} \right.\) (4)

Từ (3) và (4) suy ra: \(\left\{ \begin{array}{l} - 6 + {x_C} = 4 - {x_C}\\2 + {y_C} = - {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{x_C} = 10\\2{y_C} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 5\\{y_C} = - 1\end{array} \right.\).

Do đó tọa độ điểm C là C(5; – 1).

Thay tọa độ điểm C vào (2) ta được: \(\left\{ \begin{array}{l}{x_A} = 8 - 5 = 3\\{y_A} = 4 - \left( { - 1} \right) = 5\end{array} \right.\).

Thay tọa độ điểm C vào (4) ta được: \(\left\{ \begin{array}{l}{x_B} = 4 - 5 = - 1\\{y_B} = - \left( { - 1} \right) = 1\end{array} \right.\).

Vậy tọa độ các điểm A, B, C là A(3; 5), B(– 1; 1), C(5; – 1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

 Ta có: \(\overrightarrow {AB} = \left( {4 - \left( { - 2} \right);\,5 - 3} \right) = \left( {6;\,2} \right)\), \(\overrightarrow {AC} = \left( {2 - \left( { - 2} \right);\,\left( { - 3} \right) - 3} \right) = \left( {4;\,\, - 6} \right)\).

Vì \(\frac{6}{4} \ne \frac{{ - 3}}{{ - 6}}\) nên \(\overrightarrow {AB} \ne k\overrightarrow {AC} \).

Vậy ba điểm A, B, C không thẳng hàng.

Lời giải

Hướng dẫn giải:

Gọi tọa độ điểm D(x; y).

Ta có: \(\overrightarrow {DC} = \left( {6 - x;\left( { - 2} \right) - y} \right)\).

Vì hình thanh ABCD có AB // CD nên hai vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {DC} \) cùng hướng và CD = 2AB, do đó \(\overrightarrow {DC} = 2\overrightarrow {AB} \).

Ta có: \(2\overrightarrow {AB} = 2\left( {3;\,\,2} \right) = \left( {6;\,4} \right)\).

Do đó: \(\overrightarrow {DC} = 2\overrightarrow {AB} \)\( \Leftrightarrow \overrightarrow {DC} = \left( {6;4} \right) \Leftrightarrow \left\{ \begin{array}{l}6 - x = 6\\\left( { - 2} \right) - y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 6\end{array} \right.\).

Vậy tọa độ điểm D là D(0; – 6).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay