Câu hỏi:
04/07/2022 4,739Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).
Tìm tọa độ các điểm A, B, C.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi tọa độ các điểm A(xA; yA), B(xB; yB), C(xC; yC).
Vì P(1; 3) là trung điểm của cạnh AB nên
\(\left\{ \begin{array}{l}\frac{{{x_A} + {x_B}}}{2} = 1\\\frac{{{y_A} + {y_B}}}{2} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 2\\{y_A} + {y_B} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 2 - {x_B}\\{y_A} = 6 - {y_B}\end{array} \right.\) (1)
Vì N(4; 2) là trung điểm của cạnh CA nên \(\left\{ \begin{array}{l}\frac{{{x_A} + {x_C}}}{2} = 4\\\frac{{{y_A} + {y_C}}}{2} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_C} = 8\\{y_A} + {y_C} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 8 - {x_C}\\{y_A} = 4 - {y_C}\end{array} \right.\) (2)
Từ (1) và (2) suy ra: \(\left\{ \begin{array}{l}2 - {x_B} = 8 - {x_C}\\6 - {y_B} = 4 - {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = - 6 + {x_C}\\{y_B} = 2 + {y_C}\end{array} \right.\) (3)
Vì M(2; 0) là trung điểm của BC nên
\(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = 2\\\frac{{{y_B} + {y_C}}}{2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 4\\{y_B} + {y_C} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4 - {x_C}\\{y_B} = - {y_C}\end{array} \right.\) (4)
Từ (3) và (4) suy ra: \(\left\{ \begin{array}{l} - 6 + {x_C} = 4 - {x_C}\\2 + {y_C} = - {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{x_C} = 10\\2{y_C} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 5\\{y_C} = - 1\end{array} \right.\).
Do đó tọa độ điểm C là C(5; – 1).
Thay tọa độ điểm C vào (2) ta được: \(\left\{ \begin{array}{l}{x_A} = 8 - 5 = 3\\{y_A} = 4 - \left( { - 1} \right) = 5\end{array} \right.\).
Thay tọa độ điểm C vào (4) ta được: \(\left\{ \begin{array}{l}{x_B} = 4 - 5 = - 1\\{y_B} = - \left( { - 1} \right) = 1\end{array} \right.\).
Vậy tọa độ các điểm A, B, C là A(3; 5), B(– 1; 1), C(5; – 1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho A(– 2; 3) ; B(4; 5); C(2; – 3).
Chứng minh ba điểm A, B, C không thẳng hàng.
Câu 4:
Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.
Câu 5:
về câu hỏi!