Câu hỏi:
04/07/2022 9,949Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).
Tìm tọa độ các điểm A, B, C.
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi tọa độ các điểm A(xA; yA), B(xB; yB), C(xC; yC).
Vì P(1; 3) là trung điểm của cạnh AB nên
\(\left\{ \begin{array}{l}\frac{{{x_A} + {x_B}}}{2} = 1\\\frac{{{y_A} + {y_B}}}{2} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 2\\{y_A} + {y_B} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 2 - {x_B}\\{y_A} = 6 - {y_B}\end{array} \right.\) (1)
Vì N(4; 2) là trung điểm của cạnh CA nên \(\left\{ \begin{array}{l}\frac{{{x_A} + {x_C}}}{2} = 4\\\frac{{{y_A} + {y_C}}}{2} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_C} = 8\\{y_A} + {y_C} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 8 - {x_C}\\{y_A} = 4 - {y_C}\end{array} \right.\) (2)
Từ (1) và (2) suy ra: \(\left\{ \begin{array}{l}2 - {x_B} = 8 - {x_C}\\6 - {y_B} = 4 - {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = - 6 + {x_C}\\{y_B} = 2 + {y_C}\end{array} \right.\) (3)
Vì M(2; 0) là trung điểm của BC nên
\(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = 2\\\frac{{{y_B} + {y_C}}}{2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 4\\{y_B} + {y_C} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4 - {x_C}\\{y_B} = - {y_C}\end{array} \right.\) (4)
Từ (3) và (4) suy ra: \(\left\{ \begin{array}{l} - 6 + {x_C} = 4 - {x_C}\\2 + {y_C} = - {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{x_C} = 10\\2{y_C} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 5\\{y_C} = - 1\end{array} \right.\).
Do đó tọa độ điểm C là C(5; – 1).
Thay tọa độ điểm C vào (2) ta được: \(\left\{ \begin{array}{l}{x_A} = 8 - 5 = 3\\{y_A} = 4 - \left( { - 1} \right) = 5\end{array} \right.\).
Thay tọa độ điểm C vào (4) ta được: \(\left\{ \begin{array}{l}{x_B} = 4 - 5 = - 1\\{y_B} = - \left( { - 1} \right) = 1\end{array} \right.\).
Vậy tọa độ các điểm A, B, C là A(3; 5), B(– 1; 1), C(5; – 1).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: \(\overrightarrow {AB} = \left( {4 - \left( { - 2} \right);\,5 - 3} \right) = \left( {6;\,2} \right)\), \(\overrightarrow {AC} = \left( {2 - \left( { - 2} \right);\,\left( { - 3} \right) - 3} \right) = \left( {4;\,\, - 6} \right)\).
Vì \(\frac{6}{4} \ne \frac{{ - 3}}{{ - 6}}\) nên \(\overrightarrow {AB} \ne k\overrightarrow {AC} \).
Vậy ba điểm A, B, C không thẳng hàng.
Lời giải
Hướng dẫn giải:
Gọi tọa độ điểm D(x; y).
Ta có: \(\overrightarrow {DC} = \left( {6 - x;\left( { - 2} \right) - y} \right)\).
Vì hình thanh ABCD có AB // CD nên hai vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {DC} \) cùng hướng và CD = 2AB, do đó \(\overrightarrow {DC} = 2\overrightarrow {AB} \).
Ta có: \(2\overrightarrow {AB} = 2\left( {3;\,\,2} \right) = \left( {6;\,4} \right)\).
Do đó: \(\overrightarrow {DC} = 2\overrightarrow {AB} \)\( \Leftrightarrow \overrightarrow {DC} = \left( {6;4} \right) \Leftrightarrow \left\{ \begin{array}{l}6 - x = 6\\\left( { - 2} \right) - y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 6\end{array} \right.\).
Vậy tọa độ điểm D là D(0; – 6).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.