Câu hỏi:
04/07/2022 8,702Một vật đồng thời bị ba lực tác động: lực tác động thứ nhất \(\overrightarrow {{F_1}} \) có độ lớn là 1 500 N, lực tác động thứ hai \(\overrightarrow {{F_2}} \) có độ lớn là 600 N, lực tác động thứ ba \(\overrightarrow {{F_3}} \) có độ lớn là 800 N. Các lực này được biểu diễn bằng những vectơ như Hình 23, với \(\left( {\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} } \right) = 30^\circ ,\,\left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_3}} } \right) = 45^\circ \)và \(\left( {\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} } \right) = 75^\circ \). Tính độ lớn lực tổng hợp tác động lên vật (làm tròn kết quả đến hàng đơn vị).
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta vẽ các hợp lực như hình sau:
Theo quy tắc hình bình hành ta có: \(\overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {{F_{23}}} \).
Lực tổng hợp tác động lên vật là \(\overrightarrow F \) với \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {{F_1}} + \overrightarrow {{F_{23}}} \).
Ta cần tìm độ lớn lực \(\overrightarrow F \).
Ta có: \(\overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {{F_{23}}} \)\( \Leftrightarrow {\overrightarrow {{F_{23}}} ^2} = {\left( {\overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right)^2}\)\( \Leftrightarrow {\overrightarrow {{F_{23}}} ^2} = {\overrightarrow {{F_2}} ^2} + {\overrightarrow {{F_3}} ^2} + 2\overrightarrow {{F_2}} .\overrightarrow {{F_3}} \)
\( \Leftrightarrow {\left| {\overrightarrow {{F_{23}}} } \right|^2} = {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2.\left| {\overrightarrow {{F_2}} } \right|.\left| {\overrightarrow {{F_3}} } \right|.\cos \left( {\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} } \right)\)
\( \Leftrightarrow {\left| {\overrightarrow {{F_{23}}} } \right|^2} = {600^2} + {800^2} + 2.600.800.\cos 75^\circ \)
\( \Leftrightarrow {\left| {\overrightarrow {{F_{23}}} } \right|^2} \approx 1\,248\,466,28 \Leftrightarrow \left| {\overrightarrow {{F_{23}}} } \right| \approx 1117,35\).
Áp dụng định lí côsin ta có: \(\cos \left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_3}} } \right) = \frac{{{{\left| {\overrightarrow {{F_{23}}} } \right|}^2} + {{\left| {\overrightarrow {{F_3}} } \right|}^2} - \left| {\overrightarrow {{F_2}} } \right|}}{{2.\left| {\overrightarrow {{F_{23}}} } \right|.\left| {\overrightarrow {{F_3}} } \right|}} = \frac{{1248466,28 + {{800}^2} - {{600}^2}}}{{2.1117,35.800}} \approx 0,855\)
Do đó: \(\left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_3}} } \right) = 31^\circ \).
Lại có \(\left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_3}} } \right) + \left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_1}} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_3}} } \right)\)
Suy ra \(\left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_1}} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_3}} } \right) - \left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_3}} } \right) = 45^\circ - 31^\circ = 14^\circ \).
Ta có: \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_{23}}} \)\[ \Leftrightarrow {\overrightarrow F ^2} = {\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_{23}}} } \right)^2}\]\( \Leftrightarrow {\overrightarrow F ^2} = {\overrightarrow {{F_1}} ^2} + {\overrightarrow {{F_{23}}} ^2} + 2.\overrightarrow {{F_1}} .\overrightarrow {{F_{23}}} \)
\( \Leftrightarrow {\left| {\overrightarrow F } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_{23}}} } \right|^2} + 2.\left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_{23}}} } \right|.\cos \left( {\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_{23}}} } \right)\)
\( \Leftrightarrow {\left| {\overrightarrow F } \right|^2} = {1500^2} + 1248466,28 + 2.1500.1117,35.\cos 14^\circ \)
\( \Leftrightarrow {\left| {\overrightarrow F } \right|^2} \approx 6750946,069 \Leftrightarrow \left| {\overrightarrow F } \right| \approx 2598\).
Vậy độ lớn lực tổng hợp tác động lên vật là 2 598 N.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: \(\overrightarrow {AB} = \left( {4 - \left( { - 2} \right);\,5 - 3} \right) = \left( {6;\,2} \right)\), \(\overrightarrow {AC} = \left( {2 - \left( { - 2} \right);\,\left( { - 3} \right) - 3} \right) = \left( {4;\,\, - 6} \right)\).
Vì \(\frac{6}{4} \ne \frac{{ - 3}}{{ - 6}}\) nên \(\overrightarrow {AB} \ne k\overrightarrow {AC} \).
Vậy ba điểm A, B, C không thẳng hàng.
Lời giải
Hướng dẫn giải:
Gọi tọa độ điểm D(x; y).
Ta có: \(\overrightarrow {DC} = \left( {6 - x;\left( { - 2} \right) - y} \right)\).
Vì hình thanh ABCD có AB // CD nên hai vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {DC} \) cùng hướng và CD = 2AB, do đó \(\overrightarrow {DC} = 2\overrightarrow {AB} \).
Ta có: \(2\overrightarrow {AB} = 2\left( {3;\,\,2} \right) = \left( {6;\,4} \right)\).
Do đó: \(\overrightarrow {DC} = 2\overrightarrow {AB} \)\( \Leftrightarrow \overrightarrow {DC} = \left( {6;4} \right) \Leftrightarrow \left\{ \begin{array}{l}6 - x = 6\\\left( { - 2} \right) - y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 6\end{array} \right.\).
Vậy tọa độ điểm D là D(0; – 6).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận