Câu hỏi:

13/07/2024 23,666 Lưu

Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Gọi tọa độ điểm D(x; y).

Ta có: \(\overrightarrow {DC} = \left( {6 - x;\left( { - 2} \right) - y} \right)\).

Vì hình thanh ABCD có AB // CD nên hai vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {DC} \) cùng hướng và CD = 2AB, do đó \(\overrightarrow {DC} = 2\overrightarrow {AB} \).

Ta có: \(2\overrightarrow {AB} = 2\left( {3;\,\,2} \right) = \left( {6;\,4} \right)\).

Do đó: \(\overrightarrow {DC} = 2\overrightarrow {AB} \)\( \Leftrightarrow \overrightarrow {DC} = \left( {6;4} \right) \Leftrightarrow \left\{ \begin{array}{l}6 - x = 6\\\left( { - 2} \right) - y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 6\end{array} \right.\).

Vậy tọa độ điểm D là D(0; – 6).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

 Ta có: \(\overrightarrow {AB} = \left( {4 - \left( { - 2} \right);\,5 - 3} \right) = \left( {6;\,2} \right)\), \(\overrightarrow {AC} = \left( {2 - \left( { - 2} \right);\,\left( { - 3} \right) - 3} \right) = \left( {4;\,\, - 6} \right)\).

Vì \(\frac{6}{4} \ne \frac{{ - 3}}{{ - 6}}\) nên \(\overrightarrow {AB} \ne k\overrightarrow {AC} \).

Vậy ba điểm A, B, C không thẳng hàng.

Lời giải

Hướng dẫn giải

Ta vẽ các hợp lực như hình sau:

Media VietJack

Theo quy tắc hình bình hành ta có: \(\overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {{F_{23}}} \).

Lực tổng hợp tác động lên vật là \(\overrightarrow F \) với \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {{F_1}} + \overrightarrow {{F_{23}}} \).

Ta cần tìm độ lớn lực \(\overrightarrow F \).

Ta có: \(\overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {{F_{23}}} \)\( \Leftrightarrow {\overrightarrow {{F_{23}}} ^2} = {\left( {\overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right)^2}\)\( \Leftrightarrow {\overrightarrow {{F_{23}}} ^2} = {\overrightarrow {{F_2}} ^2} + {\overrightarrow {{F_3}} ^2} + 2\overrightarrow {{F_2}} .\overrightarrow {{F_3}} \)

\( \Leftrightarrow {\left| {\overrightarrow {{F_{23}}} } \right|^2} = {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2.\left| {\overrightarrow {{F_2}} } \right|.\left| {\overrightarrow {{F_3}} } \right|.\cos \left( {\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} } \right)\)

\( \Leftrightarrow {\left| {\overrightarrow {{F_{23}}} } \right|^2} = {600^2} + {800^2} + 2.600.800.\cos 75^\circ \)

\( \Leftrightarrow {\left| {\overrightarrow {{F_{23}}} } \right|^2} \approx 1\,248\,466,28 \Leftrightarrow \left| {\overrightarrow {{F_{23}}} } \right| \approx 1117,35\).

Áp dụng định lí côsin ta có: \(\cos \left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_3}} } \right) = \frac{{{{\left| {\overrightarrow {{F_{23}}} } \right|}^2} + {{\left| {\overrightarrow {{F_3}} } \right|}^2} - \left| {\overrightarrow {{F_2}} } \right|}}{{2.\left| {\overrightarrow {{F_{23}}} } \right|.\left| {\overrightarrow {{F_3}} } \right|}} = \frac{{1248466,28 + {{800}^2} - {{600}^2}}}{{2.1117,35.800}} \approx 0,855\)

Do đó: \(\left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_3}} } \right) = 31^\circ \).

Lại có \(\left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_3}} } \right) + \left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_1}} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_3}} } \right)\)

Suy ra \(\left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_1}} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_3}} } \right) - \left( {\overrightarrow {{F_{23}}} ,\,\overrightarrow {{F_3}} } \right) = 45^\circ - 31^\circ = 14^\circ \).

Ta có: \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_{23}}} \)\[ \Leftrightarrow {\overrightarrow F ^2} = {\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_{23}}} } \right)^2}\]\( \Leftrightarrow {\overrightarrow F ^2} = {\overrightarrow {{F_1}} ^2} + {\overrightarrow {{F_{23}}} ^2} + 2.\overrightarrow {{F_1}} .\overrightarrow {{F_{23}}} \)

\( \Leftrightarrow {\left| {\overrightarrow F } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_{23}}} } \right|^2} + 2.\left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_{23}}} } \right|.\cos \left( {\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_{23}}} } \right)\)

\( \Leftrightarrow {\left| {\overrightarrow F } \right|^2} = {1500^2} + 1248466,28 + 2.1500.1117,35.\cos 14^\circ \)

\( \Leftrightarrow {\left| {\overrightarrow F } \right|^2} \approx 6750946,069 \Leftrightarrow \left| {\overrightarrow F } \right| \approx 2598\).

Vậy độ lớn lực tổng hợp tác động lên vật là 2 598 N.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP