Câu hỏi:

13/07/2024 10,455

Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Vì \(\widehat {ABC} = 127^\circ \) nên tam giác ABC tù.

Kẻ đường cao AH của tam giác ABC, M thuộc đường thẳng BC nên đường cao của tam giác ABM cũng là AH.

Khi đó: SABC = \(\frac{1}{2}\)AH . BC và SABM = \(\frac{1}{2}\) AH . BM.

Theo bài ra ta có diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM nên SABC = 2SABM.

Do đó: \(\frac{1}{2}\)AH . BC = 2 . \(\frac{1}{2}\)AH . BM BC = 2BM hay BM = \(\frac{1}{2}\)BC.

Suy ra M là trung điểm của BC hoặc M là điểm đối xứng với trung điểm của BC qua B.

Media VietJack

Trường hợp 1: M là trung điểm của BC nên tọa độ của M là \({x_M} = \frac{{{x_B} + {x_C}}}{2} = \frac{{\left( { - 1} \right) + \left( { - 8} \right)}}{2} = \frac{{ - 9}}{2}\), \({y_M} = \frac{{{y_B} + {y_C}}}{2} = \frac{{1 + 2}}{2} = \frac{3}{2}\).

Vậy \(M\left( {\frac{{ - 9}}{2};\,\,\frac{3}{2}} \right)\).

Trường hợp 2: M là điểm đối xứng với trung điểm BC qua B.

Khi đó điểm cần tìm là M', với B là trung điểm của MM'.

Ta có: xM' = 2xB – xM = 2 . (– 1) – \(\frac{{ - 9}}{2} = \frac{5}{2}\), yM' = 2 . 1 – \(\frac{3}{2} = \frac{1}{2}\).

Vậy \(M'\left( {\frac{5}{2};\,\,\frac{1}{2}} \right)\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho A(– 2; 3) ; B(4; 5); C(2; – 3).

Chứng minh ba điểm A, B, C không thẳng hàng.

Xem đáp án » 11/07/2024 19,703

Câu 2:

Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.

Xem đáp án » 13/07/2024 19,351

Câu 3:

Tìm tọa độ điểm C sao cho G là trọng tâm của tam giác ABC.

Xem đáp án » 13/07/2024 11,671

Câu 4:

Tìm tọa độ trọng tâm G của tam giác ABC.

Xem đáp án » 13/07/2024 10,078

Câu 5:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).

Tìm tọa độ các điểm A, B, C.

Xem đáp án » 04/07/2022 9,436

Câu 6:

B. Bài tập

Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow a = \left( { - 1;\,\,2} \right)\), \(\overrightarrow b = \left( {3;\,\,1} \right)\), \(\overrightarrow c = \left( {2;\, - 3} \right)\).

Tìm tọa độ vectơ \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b - 3\overrightarrow c \).

Xem đáp án » 04/07/2022 8,373
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua