Câu hỏi:
13/07/2024 10,958Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.
Quảng cáo
Trả lời:
Hướng dẫn giải:
Vì \(\widehat {ABC} = 127^\circ \) nên tam giác ABC tù.
Kẻ đường cao AH của tam giác ABC, M thuộc đường thẳng BC nên đường cao của tam giác ABM cũng là AH.
Khi đó: SABC = \(\frac{1}{2}\)AH . BC và SABM = \(\frac{1}{2}\) AH . BM.
Theo bài ra ta có diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM nên SABC = 2SABM.
Do đó: \(\frac{1}{2}\)AH . BC = 2 . \(\frac{1}{2}\)AH . BM ⇔ BC = 2BM hay BM = \(\frac{1}{2}\)BC.
Suy ra M là trung điểm của BC hoặc M là điểm đối xứng với trung điểm của BC qua B.
Trường hợp 1: M là trung điểm của BC nên tọa độ của M là \({x_M} = \frac{{{x_B} + {x_C}}}{2} = \frac{{\left( { - 1} \right) + \left( { - 8} \right)}}{2} = \frac{{ - 9}}{2}\), \({y_M} = \frac{{{y_B} + {y_C}}}{2} = \frac{{1 + 2}}{2} = \frac{3}{2}\).
Vậy \(M\left( {\frac{{ - 9}}{2};\,\,\frac{3}{2}} \right)\).
Trường hợp 2: M là điểm đối xứng với trung điểm BC qua B.
Khi đó điểm cần tìm là M', với B là trung điểm của MM'.
Ta có: xM' = 2xB – xM = 2 . (– 1) – \(\frac{{ - 9}}{2} = \frac{5}{2}\), yM' = 2 . 1 – \(\frac{3}{2} = \frac{1}{2}\).
Vậy \(M'\left( {\frac{5}{2};\,\,\frac{1}{2}} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: \(\overrightarrow {AB} = \left( {4 - \left( { - 2} \right);\,5 - 3} \right) = \left( {6;\,2} \right)\), \(\overrightarrow {AC} = \left( {2 - \left( { - 2} \right);\,\left( { - 3} \right) - 3} \right) = \left( {4;\,\, - 6} \right)\).
Vì \(\frac{6}{4} \ne \frac{{ - 3}}{{ - 6}}\) nên \(\overrightarrow {AB} \ne k\overrightarrow {AC} \).
Vậy ba điểm A, B, C không thẳng hàng.
Lời giải
Hướng dẫn giải:
Gọi tọa độ điểm D(x; y).
Ta có: \(\overrightarrow {DC} = \left( {6 - x;\left( { - 2} \right) - y} \right)\).
Vì hình thanh ABCD có AB // CD nên hai vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {DC} \) cùng hướng và CD = 2AB, do đó \(\overrightarrow {DC} = 2\overrightarrow {AB} \).
Ta có: \(2\overrightarrow {AB} = 2\left( {3;\,\,2} \right) = \left( {6;\,4} \right)\).
Do đó: \(\overrightarrow {DC} = 2\overrightarrow {AB} \)\( \Leftrightarrow \overrightarrow {DC} = \left( {6;4} \right) \Leftrightarrow \left\{ \begin{array}{l}6 - x = 6\\\left( { - 2} \right) - y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 6\end{array} \right.\).
Vậy tọa độ điểm D là D(0; – 6).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)