Câu hỏi:
13/07/2024 10,704Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.
Quảng cáo
Trả lời:
Hướng dẫn giải:
Vì \(\widehat {ABC} = 127^\circ \) nên tam giác ABC tù.
Kẻ đường cao AH của tam giác ABC, M thuộc đường thẳng BC nên đường cao của tam giác ABM cũng là AH.
Khi đó: SABC = \(\frac{1}{2}\)AH . BC và SABM = \(\frac{1}{2}\) AH . BM.
Theo bài ra ta có diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM nên SABC = 2SABM.
Do đó: \(\frac{1}{2}\)AH . BC = 2 . \(\frac{1}{2}\)AH . BM ⇔ BC = 2BM hay BM = \(\frac{1}{2}\)BC.
Suy ra M là trung điểm của BC hoặc M là điểm đối xứng với trung điểm của BC qua B.
Trường hợp 1: M là trung điểm của BC nên tọa độ của M là \({x_M} = \frac{{{x_B} + {x_C}}}{2} = \frac{{\left( { - 1} \right) + \left( { - 8} \right)}}{2} = \frac{{ - 9}}{2}\), \({y_M} = \frac{{{y_B} + {y_C}}}{2} = \frac{{1 + 2}}{2} = \frac{3}{2}\).
Vậy \(M\left( {\frac{{ - 9}}{2};\,\,\frac{3}{2}} \right)\).
Trường hợp 2: M là điểm đối xứng với trung điểm BC qua B.
Khi đó điểm cần tìm là M', với B là trung điểm của MM'.
Ta có: xM' = 2xB – xM = 2 . (– 1) – \(\frac{{ - 9}}{2} = \frac{5}{2}\), yM' = 2 . 1 – \(\frac{3}{2} = \frac{1}{2}\).
Vậy \(M'\left( {\frac{5}{2};\,\,\frac{1}{2}} \right)\).
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho A(– 2; 3) ; B(4; 5); C(2; – 3).
Chứng minh ba điểm A, B, C không thẳng hàng.
Câu 2:
Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).
Tìm tọa độ các điểm A, B, C.
Câu 6:
B. Bài tập
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow a = \left( { - 1;\,\,2} \right)\), \(\overrightarrow b = \left( {3;\,\,1} \right)\), \(\overrightarrow c = \left( {2;\, - 3} \right)\).
Tìm tọa độ vectơ \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b - 3\overrightarrow c \).
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận