Câu hỏi:

04/07/2022 1,207

Xét vị trí tương đối của đường thẳng d: x + 2y – 2 = 0 với mỗi đường thẳng sau

Δ1: 3x – 2y + 6 = 0;

Δ2: x + 2y + 2 = 0;

Δ3: 2x + 4y – 4 = 0.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

* Tọa độ giao điểm của đường thẳng d và đường thẳng ∆1 là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}x + 2y - 2 = 0\\3x - 2y + 6 = 0\end{array} \right.\).

Phương trình trên tương đương với \[\left\{ \begin{array}{l}x + 2y = 2\\3x - 2y = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\y = \frac{3}{2}\end{array} \right.\].

Hệ có nghiệm duy nhất là (x; y) = \(\left( { - 1;\,\,\frac{3}{2}} \right)\).

Do đó đường thẳng d cắt đường thẳng ∆1 tại điểm có tọa độ \(\left( { - 1;\,\,\frac{3}{2}} \right)\).

* Tọa độ giao điểm của đường thẳng d và đường thẳng ∆2 là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}x + 2y - 2 = 0\\x + 2y + 2 = 0\end{array} \right.\).

Phương trình trên tương đương với \[\left\{ \begin{array}{l}x + 2y = 2\\x + 2y =  - 2\end{array} \right.\].

Hệ trên vô nghiệm.

Do đó đường thẳng d và đường thẳng ∆2 song song với nhau.

* Tọa độ giao điểm của đường thẳng d và đường thẳng ∆3 là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}x + 2y - 2 = 0\\2x + 4y - 4 = 0\end{array} \right.\).

Phương trình trên tương đương với \[\left\{ \begin{array}{l}x + 2y = 2\\x + 2y = 2\end{array} \right.\].

Hệ trên có vô số nghiệm.

Do đó, hai đường thẳng d và ∆3 có vô số điểm chung nên d trùng với ∆3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ba điểm A(2; 4), B(– 1; 2) và C(3; – 1). Viết phương trình đường thẳng đi qua B đồng thời cách đều A và C.

Xem đáp án » 11/07/2024 9,067

Câu 2:

hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều  khiển (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (t ≥ 0), vị trí của tàu A có tọa độ được xác định bởi công thức: \(\left\{ \begin{array}{l}x = 3 - 33t\\y = - \,4 + 25t\end{array} \right.\), vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t).

Tính côsin góc giữa hai đường đi của hai tàu A và B.

Xem đáp án » 04/07/2022 7,604

Câu 3:

Tính số đo góc giữa hai đường thẳng d1: 2x – y + 5 = 0 và d2: x – 3y + 3 = 0.

Xem đáp án » 04/07/2022 6,235

Câu 4:

B. Bài tập

Xét vị trí tương đối của mỗi cặp đường thẳng sau:

d1: 3x + 2y – 5 = 0 và d2: x – 4y + 1 = 0;

Xem đáp án » 04/07/2022 3,713

Câu 5:

Với giá trị nào của tham số m thì hai đường thẳng sau đây vuông góc?

Δ1: mx – y + 1 = 0 và Δ2: 2x – y + 3 = 0.

Xem đáp án » 11/07/2024 3,688

Câu 6:

Cho ba điểm A(2; – 1), B(1; 2) và C(4; – 2). Tính số đo góc BAC và góc giữa hai đường thẳng AB, AC.

Xem đáp án » 11/07/2024 3,146

Câu 7:

Tính khoảng cách từ một điểm đến một đường thẳng trong mỗi trường hợp sau:

A(1; – 2) và Δ1: 3x – y + 4 = 0;

Xem đáp án » 11/07/2024 2,166

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn