Câu hỏi:

11/07/2024 10,548 Lưu

Lập phương trình tiếp tuyến tại điểm có hoành độ bằng 3 thuộc đường tròn

(x + 2)2 + (y + 7)2 = 169.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Ta có: (x + 2)2 + (y + 7)2 = 169 (x – (–2))2 + (y – (–7))2 = 132.

Do đó, đường tròn đã cho có tâm I(– 2; – 7) và bán kính R = 13.

Hoành độ của tiếp điểm là 3 hay x = 3, thay vào phương trình đường tròn ta được:

(3 + 2)2 + (y + 7)2 = 169 (y + 7)2 = 144 (y + 7)2 = 122

Suy ra y + 7 = 12 hoặc y + 7 = – 12

Suy ra y = 5 hoặc y = – 19.

Do đó ta tìm được các điểm thuộc đường tròn có hoành độ bằng 3 là A(3; 5) và B(3; – 19).

Phương trình tiếp tuyến của đường tròn tâm I(– 2; – 7) tại điểm A(3; 5) là

(3 + 2)(x – 3) + (5 + 7)(y – 5) = 0

5x – 15 + 12y – 60 = 0

5x + 12y – 75 = 0.

Phương trình tiếp tuyến của đường tròn tại B(3; – 19) là

(3 + 2)(x – 3) + (– 19 + 7)(y – (– 19)) = 0

5x – 15 – 12y – 228 = 0

5x – 12y – 243 = 0.

Vậy các phương trình tiếp tuyến thỏa mãn là 5x + 12y – 75 = 0; 5x – 12y – 243 = 0.

Anh Tài Mai

Anh Tài Mai

Tính kiểu j ra đc 12 vậy a

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đĩa chuyển động trên một đường tròn tâm \(I\left( {0;\,\frac{3}{2}} \right)\) bán kính 0,8; đến điểm \(M\left( {\frac{{\sqrt {39} }}{{10}};\,\,2} \right)\), đĩa được ném đi, do đó trong những giây đầu tiên sau khi ném đi, đĩa chuyển động trên một đường thẳng là tiếp tuyến của đường tròn tâm I, bán kính 0,8 tại tiếp điểm M.

Phương trình tiếp tuyến của đường tròn tâm I tại tiếp điểm M là

\(\left( {\frac{{\sqrt {39} }}{{10}} - 0} \right)\left( {x - \frac{{\sqrt {39} }}{{10}}} \right) + \left( {2 - \frac{3}{2}} \right)\left( {y - 2} \right) = 0\)

\( \Leftrightarrow \frac{{\sqrt {39} }}{{10}}x - \frac{{39}}{{100}} + \frac{1}{2}y - 1 = 0\)

\( \Leftrightarrow 10\sqrt {39} x + 50y - 139 = 0\).

Vậy trong những giây đầu tiên ngay sau khi được ném đi, quỹ đạo chuyển động của chiếc đĩa có phương trình là \(10\sqrt {39} x + 50y - 139 = 0\).

Lời giải

Hướng dẫn giải

Ta có: (x + 1)2 + (y – 2)2 = 4 (x – (– 1))2 + (y – 2)2 = 22.

Đường tròn đã cho có tâm I(– 1; 2) và bán kính R = 2.

Gọi đường thẳng d có phương trình 3x + 4y + m = 0, đường thẳng này tiếp xúc với đường tròn đã cho khi và chỉ khi khoảng cách từ tâm I của đường tròn đến đường thẳng bằng bán kính của đường tròn hay d(I, d) = R

\( \Leftrightarrow \frac{{\left| {3.\left( { - 1} \right) + 4.2 + m} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 2\)

\( \Leftrightarrow \frac{{\left| {m + 5} \right|}}{5} = 2\) |m + 5| = 10

Suy ra m + 5 = 10 hoặc m + 5 = – 10

Suy ra m = 5 hoặc m = – 15.

Vậy m = 5, m = – 15 thì thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP