Câu hỏi:
11/07/2024 10,501Lập phương trình tiếp tuyến tại điểm có hoành độ bằng 3 thuộc đường tròn
(x + 2)2 + (y + 7)2 = 169.
Câu hỏi trong đề: Bài tập Phương trình đường tròn có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có: (x + 2)2 + (y + 7)2 = 169 ⇔ (x – (–2))2 + (y – (–7))2 = 132.
Do đó, đường tròn đã cho có tâm I(– 2; – 7) và bán kính R = 13.
Hoành độ của tiếp điểm là 3 hay x = 3, thay vào phương trình đường tròn ta được:
(3 + 2)2 + (y + 7)2 = 169 ⇔ (y + 7)2 = 144 ⇔ (y + 7)2 = 122
Suy ra y + 7 = 12 hoặc y + 7 = – 12
Suy ra y = 5 hoặc y = – 19.
Do đó ta tìm được các điểm thuộc đường tròn có hoành độ bằng 3 là A(3; 5) và B(3; – 19).
Phương trình tiếp tuyến của đường tròn tâm I(– 2; – 7) tại điểm A(3; 5) là
(3 + 2)(x – 3) + (5 + 7)(y – 5) = 0
⇔ 5x – 15 + 12y – 60 = 0
⇔ 5x + 12y – 75 = 0.
Phương trình tiếp tuyến của đường tròn tại B(3; – 19) là
(3 + 2)(x – 3) + (– 19 + 7)(y – (– 19)) = 0
⇔ 5x – 15 – 12y – 228 = 0
⇔ 5x – 12y – 243 = 0.
Vậy các phương trình tiếp tuyến thỏa mãn là 5x + 12y – 75 = 0; 5x – 12y – 243 = 0.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đĩa chuyển động trên một đường tròn tâm \(I\left( {0;\,\frac{3}{2}} \right)\) bán kính 0,8; đến điểm \(M\left( {\frac{{\sqrt {39} }}{{10}};\,\,2} \right)\), đĩa được ném đi, do đó trong những giây đầu tiên sau khi ném đi, đĩa chuyển động trên một đường thẳng là tiếp tuyến của đường tròn tâm I, bán kính 0,8 tại tiếp điểm M.
Phương trình tiếp tuyến của đường tròn tâm I tại tiếp điểm M là
\(\left( {\frac{{\sqrt {39} }}{{10}} - 0} \right)\left( {x - \frac{{\sqrt {39} }}{{10}}} \right) + \left( {2 - \frac{3}{2}} \right)\left( {y - 2} \right) = 0\)
\( \Leftrightarrow \frac{{\sqrt {39} }}{{10}}x - \frac{{39}}{{100}} + \frac{1}{2}y - 1 = 0\)
\( \Leftrightarrow 10\sqrt {39} x + 50y - 139 = 0\).
Vậy trong những giây đầu tiên ngay sau khi được ném đi, quỹ đạo chuyển động của chiếc đĩa có phương trình là \(10\sqrt {39} x + 50y - 139 = 0\).
Lời giải
Hướng dẫn giải
Ta có: (x + 1)2 + (y – 2)2 = 4 ⇔ (x – (– 1))2 + (y – 2)2 = 22.
Đường tròn đã cho có tâm I(– 1; 2) và bán kính R = 2.
Gọi đường thẳng d có phương trình 3x + 4y + m = 0, đường thẳng này tiếp xúc với đường tròn đã cho khi và chỉ khi khoảng cách từ tâm I của đường tròn đến đường thẳng bằng bán kính của đường tròn hay d(I, d) = R
\( \Leftrightarrow \frac{{\left| {3.\left( { - 1} \right) + 4.2 + m} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 2\)
\( \Leftrightarrow \frac{{\left| {m + 5} \right|}}{5} = 2\) ⇔ |m + 5| = 10
Suy ra m + 5 = 10 hoặc m + 5 = – 10
Suy ra m = 5 hoặc m = – 15.
Vậy m = 5, m = – 15 thì thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Anh Tài Mai
Tính kiểu j ra đc 12 vậy a