Câu hỏi:
26/07/2022 6,933Tính theo đường chim bay, xác định khoảng cách ngắn nhất để một người ở vị trí có toạ độ (– 3; 4) di chuyển được tới vùng phủ sóng theo đơn vị ki-lô-mét (làm tròn kết quả đến hàng phần mười).
Câu hỏi trong đề: Bài tập Phương trình đường tròn có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Hướng dẫn giải:
Gọi vị trí người đó đang đứng là B(– 3; 4).
Ta có: \(\overrightarrow {BI} = \left( { - 2 - \left( { - 3} \right);\,1 - 4} \right) = \left( {1;\, - 3} \right)\), \(BI = \sqrt {{1^2} + {{\left( { - 3} \right)}^2}} = \sqrt {10} \).
BI > R nên B nằm ngoài đường tròn ranh giới, giả sử đường thẳng BI cắt đường tròn tại điểm A, khi đó AB là khoảng cách ngắn nhất từ B đến vùng phủ sóng.
Ta cần tìm tọa độ điểm A.
Đường thẳng BI có một vectơ chỉ phương là vectơ \(\overrightarrow {BI} \) nên nó có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;\,\,1} \right)\). Do đó, phương trình đường thẳng BI là 3(x + 3) + 1(y – 4) = 0 hay 3x + y + 5 = 0.
Tọa độ của giao điểm A là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}3x + y + 5 = 0\\{\left( {x{\rm{ }} + {\rm{ }}2} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}--{\rm{ }}1} \right)^2} = {\rm{ }}9\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\{\left( {x + 2} \right)^2} + {\left( { - 3x - 5 - 1} \right)^2} = 9\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\{x^2} + 4x + 4 + 9{x^2} + 36x + 36 = 9\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\10{x^2} + 40x + 31 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\\left[ \begin{array}{l}x = \frac{{ - 20 + 3\sqrt {10} }}{{10}}\\x = \frac{{ - 20 - 3\sqrt {10} }}{{10}}\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = \frac{{ - 20 + 3\sqrt {10} }}{{10}}\\y = \frac{{10 - 9\sqrt {10} }}{{10}}\end{array} \right.\\\left\{ \begin{array}{l}x = \frac{{ - 20 - 3\sqrt {10} }}{{10}}\\y = \frac{{10 + 9\sqrt {10} }}{{10}}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}A\left( {\frac{{ - 20 + 3\sqrt {10} }}{{10}};\,\,\frac{{10 - 9\sqrt {10} }}{{10}}} \right)\\A\left( {\frac{{ - 20 - 3\sqrt {10} }}{{10}};\,\,\frac{{10 + 9\sqrt {10} }}{{10}}} \right)\end{array} \right.\)
+ Với \(A\left( {\frac{{ - 20 + 3\sqrt {10} }}{{10}};\,\,\frac{{10 - 9\sqrt {10} }}{{10}}} \right)\)
Ta có: \(AB = \sqrt {{{\left( { - 3 - \frac{{ - 20 + 3\sqrt {10} }}{{10}}} \right)}^2} + {{\left( {4 - \frac{{10 - 9\sqrt {10} }}{{10}}} \right)}^2}} \approx 6,2\)
+ Với \(A\left( {\frac{{ - 20 - 3\sqrt {10} }}{{10}};\,\,\frac{{10 + 9\sqrt {10} }}{{10}}} \right)\)
Ta có: \(AB = \sqrt {{{\left( { - 3 - \frac{{ - 20 - 3\sqrt {10} }}{{10}}} \right)}^2} + {{\left( {4 - \frac{{10 + 9\sqrt {10} }}{{10}}} \right)}^2}} \approx 0,2\)
Do 0,2 < 6,2 nên ta chọn kết quả 0,2.
Vậy tính theo đường chim bay, khoảng cách ngắn nhất để một người ở vị trí có toạ độ (– 3; 4) di chuyển được tới vùng phủ sóng là 0,2 km.
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ném đĩa là một môn thể thao thi đấu trong Thế vận hội Olympic mùa hè. Khi thực hiện cú ném, vận động viên thường quay lưng lại với hướng ném, sau đó xoay ngược chiều kim đồng hồ một vòng rưỡi của đường tròn để lấy đà rồi thả tay ra khỏi đĩa. Giả sử đĩa chuyển động trên một đường tròn tâm \(I\left( {0;\,\frac{3}{2}} \right)\) bán kính 0,8 trong mặt phẳng tọa độ Oxy (đơn vị trên hai trục là mét). Đến điểm \(M\left( {\frac{{\sqrt {39} }}{{10}};\,\,2} \right)\), đĩa được ném đi (Hình 47). Trong những giây đầu tiên ngay sau khi được ném đi, quỹ đạo chuyển động của chiếc đĩa có phương trình như thế nào?
Câu 2:
Tìm m sao cho đường thẳng 3x + 4y + m = 0 tiếp xúc với đường tròn
(x + 1)2 + (y – 2)2 = 4.
Câu 3:
Lập phương trình tiếp tuyến tại điểm có hoành độ bằng 3 thuộc đường tròn
(x + 2)2 + (y + 7)2 = 169.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận