Câu hỏi:

26/07/2022 2,879

Đường tròn đi qua ba điểm A(1; 1); B(3; 1); C(0; 4).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Giả sử tâm của đường tròn là điểm I(a; b).

Ta có IA = IB = IC IA2 = IB2 = IC2.

Vì IA2 = IB2, IB2 = IC2 nên

\(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} - 2a + 1 = {a^2} - 6a + 9\\{a^2} - 6a + 9 + {b^2} - 2b + 1 = {a^2} + {b^2} - 8b + 16\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}4a = 8\\ - 6a + 6b = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)

Đường tròn tâm I(2; 3) bán kính R = IC = \(\sqrt {{a^2} + {{\left( {4 - b} \right)}^2}} \)\( = \sqrt {{2^2} + {{\left( {4 - 3} \right)}^2}} = \sqrt 5 \).

Phương trình đường tròn là \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = {\left( {\sqrt 5 } \right)^2}\).

Vậy phương trình đường tròn là (x – 2)2 + (y – 3)2 = 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ném đĩa là một môn thể thao thi đấu trong Thế vận hội Olympic mùa hè. Khi thực hiện cú ném, vận động viên thường quay lưng lại với hướng ném, sau đó xoay ngược chiều kim đồng hồ một vòng rưỡi của đường tròn để lấy đà rồi thả tay ra khỏi đĩa. Giả sử đĩa chuyển động trên một đường tròn tâm \(I\left( {0;\,\frac{3}{2}} \right)\) bán kính 0,8 trong mặt phẳng tọa độ Oxy (đơn vị trên hai trục là mét). Đến điểm \(M\left( {\frac{{\sqrt {39} }}{{10}};\,\,2} \right)\), đĩa được ném đi (Hình 47). Trong những giây đầu tiên ngay sau khi được ném đi, quỹ đạo chuyển động của chiếc đĩa có phương trình như thế nào?

Media VietJack

Xem đáp án » 11/07/2024 6,380

Câu 2:

Tìm m sao cho đường thẳng 3x + 4y + m = 0 tiếp xúc với đường tròn

(x + 1)2 + (y – 2)2 = 4.

Xem đáp án » 11/07/2024 6,135

Câu 3:

Lập phương trình tiếp tuyến tại điểm có hoành độ bằng 3 thuộc đường tròn

(x + 2)2 + (y + 7)2 = 169.

Xem đáp án » 11/07/2024 6,005

Câu 4:

Đường tròn đường kính AB với A(3; – 4) và B(– 1; 6);

Xem đáp án » 26/07/2022 5,065

Câu 5:

Đường tròn có tâm I(5; – 2) và đi qua điểm M(4; – 1);

Xem đáp án » 26/07/2022 4,500

Câu 6:

Viết phương trình đường tròn tâm I(6; – 4) đi qua điểm A(8; – 7).

Xem đáp án » 11/07/2024 3,507

Câu 7:

Đường tròn có tâm I(1; – 1) và có một tiếp tuyến là Δ: 5x – 12y – 1 = 0;

Xem đáp án » 26/07/2022 3,182

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store