Câu hỏi:
12/07/2024 463Cho Hình 4.16, biết rằng \[\widehat {DAC} = 40^\circ \], \(\widehat {DCA} = 50^\circ \), hãy tính số đo các góc của tam giác ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Xét tam giác ADC có:
\[\widehat {DAC} + \widehat {DCA} + \widehat D = 180^\circ \] (định lí tổng ba góc trong tam giác)
40° + 50° + \(\widehat D\) = 180°
\(\widehat D\) = 180° – 40° – 50°
\(\widehat D\) = 90°
Xét ∆ADC và ∆ABC có:
AD = AB (giả thiết)
DC = BC (giả thiết)
AC chung
Do đó, ∆ADC = ∆ABC (c – c – c)
Suy ra, \(\widehat {DAC} = \widehat {BAC}\); \(\widehat {DCA} = \widehat {BCA}\); \(\widehat D = \widehat B\) (các góc tương ứng).
Do đó, \(\widehat {BAC} = \widehat {DAC}\) = 40°; \(\widehat {BCA} = \widehat {DCA}\) = 50°; \(\widehat B = \widehat D\) = 90°.
Vậy tam giác ABC có \(\widehat {BAC}\)= 40°; \(\widehat {BCA}\)= 50°; \(\widehat B\)= 90°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các điểm A, B, C, D, E như Hình 4.18, biết rằng AB = AC, AD = AE, BD = CE. Chứng minh rằng \(\widehat {AEB} = \widehat {ADC}\).
Câu 2:
Với hai tam giác ABC và MNP bất kì, sao cho ∆ABC = ∆MNP, những câu nào dưới đây đúng?
a) AB = MN, AC = MP, BC = NP.
b) \(\widehat A = \widehat M,\,\,\,\widehat B = \widehat N,\,\,\,\widehat C = \widehat P.\)
c) BA = NM, CA = PM, CB = PN.
d) \(\widehat B = \widehat P,\,\,\,\widehat C = \widehat M,\,\,\,\widehat A = \widehat N.\)
Câu 3:
Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19).
Chứng minh: ∆ABD = ∆DCA; ∆ADC = ∆BCD.
Câu 4:
Câu 6:
Cho Hình 4.17, biết rằng AD = BC, AC = BD và \(\widehat {ABD} = 30^\circ \), hãy tính số đo của góc DEC.
Câu 7:
Với hai tam giác ABC và DEF bất kì, sao cho ∆ABC = ∆DEF, những câu nào dưới đây đúng?
a) ∆BCA = ∆FED.
b) ∆CAB = ∆EDF.
c) ∆BAC = ∆EDF.
d) ∆CBA = ∆FDE.
về câu hỏi!