Câu hỏi:
12/07/2024 507Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19).
Bằng cách tính số đo góc ADC, hãy cho biết ABCD có phải hình chữ nhật không.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Do ∆ABD = ∆DCA nên \(\widehat {DAB} = \widehat {ADC}\).
Mặt khác vì ABCD là hình bình hành nên AB // CD, do đó \(\widehat {DAB} + \widehat {ADC} = 180^\circ \) (hai góc trong cùng phía).
Do vậy \(\widehat {DAB} = \widehat {ADC} = \frac{{180^\circ }}{2} = 90^\circ \).
Hình bình hành ABCD có một góc vuông nên ta suy ra các góc còn lại cũng là góc vuông. Vậy ABCD là hình chữ nhật.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các điểm A, B, C, D, E như Hình 4.18, biết rằng AB = AC, AD = AE, BD = CE. Chứng minh rằng \(\widehat {AEB} = \widehat {ADC}\).
Câu 2:
Với hai tam giác ABC và MNP bất kì, sao cho ∆ABC = ∆MNP, những câu nào dưới đây đúng?
a) AB = MN, AC = MP, BC = NP.
b) \(\widehat A = \widehat M,\,\,\,\widehat B = \widehat N,\,\,\,\widehat C = \widehat P.\)
c) BA = NM, CA = PM, CB = PN.
d) \(\widehat B = \widehat P,\,\,\,\widehat C = \widehat M,\,\,\,\widehat A = \widehat N.\)
Câu 3:
Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19).
Chứng minh: ∆ABD = ∆DCA; ∆ADC = ∆BCD.
Câu 4:
Câu 6:
Cho Hình 4.17, biết rằng AD = BC, AC = BD và \(\widehat {ABD} = 30^\circ \), hãy tính số đo của góc DEC.
Câu 7:
Với hai tam giác ABC và DEF bất kì, sao cho ∆ABC = ∆DEF, những câu nào dưới đây đúng?
a) ∆BCA = ∆FED.
b) ∆CAB = ∆EDF.
c) ∆BAC = ∆EDF.
d) ∆CBA = ∆FDE.
về câu hỏi!