Câu hỏi:

13/07/2024 1,820

Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:

AF // CE.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Vì ∆ABF = ∆CDE nên \(\widehat {AFB} = \widehat {CED}\) (hai góc tương ứng).

Lại có ABCD là hình chữ nhật nên AD // BC nên \(\widehat {CED} = \widehat {ECF}\)(hai góc so le trong).

Ta có: \(\widehat {AFB} = \widehat {CED}\); \(\widehat {CED} = \widehat {ECF}\) nên \(\widehat {AFB} = \widehat {ECF}\).

Mà hai góc này ở vị trí đồng vị

Nên AF // CE (điều phải chứng minh).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Vì ABCD là hình vuông nên AB = BC = CD = DA.

Vì N là trung điểm của AD nên AN = ND = \(\frac{{AD}}{2}\).

Vì M là trung điểm của AB nên AM = MB = \(\frac{{AB}}{2}\).

Mà AB = AD nên AN = BM.

Xét ∆ANB và ∆BMC có:

AN = BM (chứng minh trên)

AB = BC (chứng minh trên)

\(\widehat {NAB}\) = \(\widehat {MBC}\) = 90° (do ABCD là hình vuông)

Do đó, ∆ANB = ∆BMC (hai cạnh góc vuông)

Suy ra, BN = CM (hai cạnh tương ứng).

Gọi E là giao điểm của BN và CM.

Media VietJack

Do ∆ANB = ∆BMC nên \(\widehat {EMB} = \widehat {CMB} = \widehat {BNA}\).

Từ định lí tổng ba góc trong tam giác BME và tam giác ABN, ta suy ra:

\(\widehat {BEM} = 180^\circ - \widehat {EMB} - \widehat {MBE} = 180^\circ - \widehat {BNA} - \widehat {ABN} = \widehat {BAN} = 90^\circ \).

Vậy BN vuông góc với CM tại E.

Lời giải

Hướng dẫn giải

Xét ∆ABC và ∆ABD có:

AB chung

\(\widehat {CAB}\) = \(\widehat {DAB}\) (giả thiết)

\(\widehat {ACB}\) = \(\widehat {ADB}\) = 90° (giả thiết)

Do đó, ∆ABC = ∆ABD (cạnh huyền – góc nhọn).

Suy ra CB = DB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP