Câu hỏi trong đề: Giải SBT Toán 7 Ôn tập chương 4 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Câu A sai do ba cặp góc của tam giác tương ứng bằng nhau thì các cạnh tương ứng chưa chắc đã bằng nhau.
Câu B đúng theo trường hợp bằng nhau cạnh – cạnh – cạnh của hai tam giác.
Câu C sai, cặp góc tương ứng bằng nhau phải là góc xem giữa hai cạnh thì câu này mới đúng,
Câu D sai do ta mới chỉ có hai yếu tố.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Xét tam giác vuông PBM và tam giác vuông QCM có:
BM = MC (do M là trung điểm của BC)
\(\widehat B = \widehat C\) (do tam giác ABC cân tại đỉnh A)
Do đó, ∆PBM = ∆QCM (cạnh huyền – góc nhọn).
Suy ra MP = MQ.
Ta lại có: AB = AC (do tam giác ABC cân tại đỉnh A).
AB = AP + PB, AC = AQ + QC.
Suy ra AP + PB = AQ + QC
Mà PB = QC (do ∆PBM = ∆QCM)
Do đó AP = AQ.
Lời giải
Hướng dẫn giải
a) Câu a) đúng.
Giải thích:
+ Giả sử tam giác ABC cân tại đỉnh A có góc ở đáy \(\widehat B\) = 60°.
Khi đó, \(\widehat C = \widehat B = 60^\circ \).
Theo định lí tổng ba góc trong tam giác, ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \).
\( \Rightarrow \widehat A = 180^\circ - \widehat B - \widehat C = 180^\circ - 60^\circ - 60^\circ = 60^\circ \).
Do đó, \(\widehat A = \widehat B = \widehat C = 60^\circ \), nên tam giác ABC cân tại đỉnh C.
Vậy tam giác ABC đều.
+ Giả sử tam giác ABC cân tại đỉnh A có góc ở đỉnh \(\widehat A = 60^\circ \).
Theo định lí tổng ba góc trong tam giác, ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \).
Mà \(\widehat B = \widehat C\) (do tam giác ABC cân đỉnh A).
Do đó, \(\widehat B + \widehat B = 180^\circ - \widehat A = 180^\circ - 60^\circ = 120^\circ \), suy ra \(\widehat B = 60^\circ \).
Do đó, \(\widehat A = \widehat B = \widehat C = 60^\circ \), nên tam giác ABC cân tại đỉnh C.
Vậy tam giác ABC đều.
b) Câu b) sai.
Chẳng hạn tam giác ABC cân tại đỉnh A có \(\widehat A = 100^\circ \), \(\widehat B = \widehat C = 40^\circ \), đây là tam giác tù.
c) Từ định lí tổng ba góc trong tam giác, ta suy ra tổng hai góc nhọn của một tam giác vuông bằng 90°.
Vậy câu c) đúng.
d) Tam giác vuông cân thì luôn cân tại đỉnh góc vuông và có hai góc nhọn bằng 45° là câu đúng.
Giả sử có tam giác ABC vuông tại A, cân tại B, khi đó \(\widehat A = \widehat C = 90^\circ \), do đó \(\widehat A + \widehat B + \widehat C > 180^\circ \) không thỏa mãn định lí tổng ba góc trong tam giác.
Vậy tam giác vuông cân thì luôn cân tại đỉnh góc vuông và từ định lí tổng ba góc và tính chất của tam giác cân, ta tính được số đo hai góc nhọn bằng 45°.
Vậy câu a), c), d) đúng và câu b) sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.