Câu hỏi:

13/07/2024 2,317

Cho hình thang cân ABCD có đáy lớn AD và đáy nhỏ BC thỏa mãn AD = 4 cm và AB = BC = CD = 2 cm (H.4.62). Tính các góc của hình thang ABCD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi O là trung điểm của AD.

Khi đó, AO = OD = \(\frac{{AD}}{2} = \frac{4}{2} = 2\) (cm).

Do đó, AB = BC = CD = AO = OD = 2 cm.

Tam giác ABO có AB = BO nên tam giác ABO cân tại đỉnh A.

Suy ra \(\widehat {ABO} = \widehat {AOB}\).

Lại có: AD // BC (do ABCD là hình thang cân có AD và BC là đáy)

Suy ra \(\widehat {CBO} = \widehat {AOB}\) (hai góc so le trong).

Do đó, \(\widehat {ABO} = \widehat {AOB} = \widehat {CBO}\).

Xét tam giác ABO và tam giác CBO có:

AB = BC (= 2 cm)

\(\widehat {ABO} = \widehat {CBO}\) (cmt)

BO: cạnh chung

Do đó, ∆ABO = ∆CBO (c – g – c).

Suy ra CO = AO = 2 cm.

Tam giác COD có CD = OD = OC (= 2 cm). Do đó tam giác COD là tam giác đều.

Suy ra \(\widehat D = \widehat {CDO} = 60^\circ \).

Ta có: \(\widehat D + \widehat {BCD} = 180^\circ \) (BC // AD, hai góc ở vị trí trong cùng phía)

Suy ra \(\widehat {BCD} = 180^\circ - \widehat D = 180^\circ - 60^\circ = 120^\circ \).

Do ABCD là hình thang cân với AD và BC là đáy.

Vậy \(\widehat A = \widehat D = 60^\circ \)\(\widehat {ABC} = \widehat {BCD} = 120^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét tam giác vuông PBM và tam giác vuông QCM có:

BM = MC (do M là trung điểm của BC)

\(\widehat B = \widehat C\) (do tam giác ABC cân tại đỉnh A)

Do đó, ∆PBM = ∆QCM (cạnh huyền – góc nhọn).

Suy ra MP = MQ.

Ta lại có: AB = AC (do tam giác ABC cân tại đỉnh A).

AB = AP + PB, AC = AQ + QC.

Suy ra AP + PB = AQ + QC

Mà PB = QC (do ∆PBM = ∆QCM)

Do đó AP = AQ.

Lời giải

Hướng dẫn giải

a) Câu a) đúng.

Giải thích:

+ Giả sử tam giác ABC cân tại đỉnh A có góc ở đáy \(\widehat B\) = 60°.

Khi đó, \(\widehat C = \widehat B = 60^\circ \).

Theo định lí tổng ba góc trong tam giác, ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \).

\( \Rightarrow \widehat A = 180^\circ - \widehat B - \widehat C = 180^\circ - 60^\circ - 60^\circ = 60^\circ \).

Do đó, \(\widehat A = \widehat B = \widehat C = 60^\circ \), nên tam giác ABC cân tại đỉnh C.

Vậy tam giác ABC đều.

+ Giả sử tam giác ABC cân tại đỉnh A có góc ở đỉnh \(\widehat A = 60^\circ \).

Theo định lí tổng ba góc trong tam giác, ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \).

\(\widehat B = \widehat C\) (do tam giác ABC cân đỉnh A).

Do đó, \(\widehat B + \widehat B = 180^\circ - \widehat A = 180^\circ - 60^\circ = 120^\circ \), suy ra \(\widehat B = 60^\circ \).

Do đó, \(\widehat A = \widehat B = \widehat C = 60^\circ \), nên tam giác ABC cân tại đỉnh C.

Vậy tam giác ABC đều.

b) Câu b) sai.

Chẳng hạn tam giác ABC cân tại đỉnh A có \(\widehat A = 100^\circ \), \(\widehat B = \widehat C = 40^\circ \), đây là tam giác tù.

c) Từ định lí tổng ba góc trong tam giác, ta suy ra tổng hai góc nhọn của một tam giác vuông bằng 90°.

Vậy câu c) đúng.

d) Tam giác vuông cân thì luôn cân tại đỉnh góc vuông và có hai góc nhọn bằng 45° là câu đúng.

Giả sử có tam giác ABC vuông tại A, cân tại B, khi đó \(\widehat A = \widehat C = 90^\circ \), do đó \(\widehat A + \widehat B + \widehat C > 180^\circ \) không thỏa mãn định lí tổng ba góc trong tam giác.

Vậy tam giác vuông cân thì luôn cân tại đỉnh góc vuông và từ định lí tổng ba góc và tính chất của tam giác cân, ta tính được số đo hai góc nhọn bằng 45°.

Vậy câu a), c), d) đúng và câu b) sai.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP