Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Điểm H thuộc đường thẳng MH nên gọi tọa độ H(– 1 + 2t; 1 + t).
Do H là hình chiếu của M lên ∆, do đó H cũng thuộc đường thẳng ∆ nên tọa độ điểm H thỏa mãn phương trình ∆, thay vào ta được:
2(– 1 + 2t) + (1 + t) – 4 = 0 ⇔ 5t – 5 = 0 ⇔ t = 1.
Do đó H(1; 2).
Vậy độ dài đoạn thẳng MH là MH = \(\sqrt {{{\left( {1 - \left( { - 1} \right)} \right)}^2} + {{\left( {2 - 1} \right)}^2}} = \sqrt 5 \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ba điểm A(2; 4), B(– 1; 2) và C(3; – 1). Viết phương trình đường thẳng đi qua B đồng thời cách đều A và C.
Câu 2:
Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (t ≥ 0), vị trí của tàu A có tọa độ được xác định bởi công thức: \(\left\{ \begin{array}{l}x = 3 - 33t\\y = - \,4 + 25t\end{array} \right.\), vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t).
Tính côsin góc giữa hai đường đi của hai tàu A và B.
Câu 3:
Câu 4:
Câu 5:
Với giá trị nào của tham số m thì hai đường thẳng sau đây vuông góc?
Δ1: mx – y + 1 = 0 và Δ2: 2x – y + 3 = 0.
Câu 6:
B. Bài tập
Xét vị trí tương đối của mỗi cặp đường thẳng sau:
d1: 3x + 2y – 5 = 0 và d2: x – 4y + 1 = 0;
Câu 7:
Tính khoảng cách từ một điểm đến một đường thẳng trong mỗi trường hợp sau:
A(1; – 2) và Δ1: 3x – y + 4 = 0;
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
28 câu Trắc nghiệm Mệnh đề có đáp án
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
80 câu trắc nghiệm Vectơ cơ bản (P1)
về câu hỏi!