Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đường thẳng d1 đi qua điểm A(3; – 4) và có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {25;\,\,33} \right)\).
Do đó phương trình tổng quát của d1 là 25(x – 3) + 33(y + 4) = 0 hay 25x + 33y + 57 = 0.
Đường thẳng d2 đi qua điểm B(4; 3) và có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {4;\,\, - 3} \right)\).
Do đó phương trình tổng quát của d2 là 4(x – 4) – 3(y – 3) = 0 hay 4x – 3y – 7 = 0.
Tọa độ giao điểm của hai đường thẳng d1 và d2 là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}25x + 33y + 57 = 0\\4x - 3y - 7 = 0\end{array} \right.\).
Hệ trên có nghiệm duy nhất \(\left\{ \begin{array}{l}x = \frac{{20}}{{69}}\\y = - \frac{{403}}{{207}}\end{array} \right.\).
Do đó hai đường thẳng d1 và d2 cắt nhau tại điểm có tọa độ \(\left( {\frac{{20}}{{69}};\, - \frac{{403}}{{207}}} \right)\).
Khi đó hai tàu A và tàu B gần nhau nhất khi hai tàu ở vị trí tọa độ \(\left( {\frac{{20}}{{69}};\, - \frac{{403}}{{207}}} \right)\).
Thay tọa độ \(\left( {\frac{{20}}{{69}};\, - \frac{{403}}{{207}}} \right)\) vào phương trình tham số d1 ta được: \(\left\{ \begin{array}{l}\frac{{20}}{{69}} = 3 - 33t\\ - \frac{{403}}{{207}} = - \,4 + 25t\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}t = \frac{{17}}{{207}}\\t = \frac{{17}}{{207}}\end{array} \right. \Leftrightarrow t = \frac{{17}}{{207}}\).
Vậy sau \(\frac{{17}}{{207}}\) giờ kể từ thời điểm xuất phát thì hai tàu gần nhau nhất.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ba điểm A(2; 4), B(– 1; 2) và C(3; – 1). Viết phương trình đường thẳng đi qua B đồng thời cách đều A và C.
Câu 2:
Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (t ≥ 0), vị trí của tàu A có tọa độ được xác định bởi công thức: \(\left\{ \begin{array}{l}x = 3 - 33t\\y = - \,4 + 25t\end{array} \right.\), vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t).
Tính côsin góc giữa hai đường đi của hai tàu A và B.
Câu 3:
Câu 4:
B. Bài tập
Xét vị trí tương đối của mỗi cặp đường thẳng sau:
d1: 3x + 2y – 5 = 0 và d2: x – 4y + 1 = 0;
Câu 5:
Với giá trị nào của tham số m thì hai đường thẳng sau đây vuông góc?
Δ1: mx – y + 1 = 0 và Δ2: 2x – y + 3 = 0.
Câu 6:
Câu 7:
Tính khoảng cách từ một điểm đến một đường thẳng trong mỗi trường hợp sau:
A(1; – 2) và Δ1: 3x – y + 4 = 0;
về câu hỏi!